Abstract:
The invention relates to methods for informing an eNodeB on the transmit power status of a user equipment in a mobile communication system using component carrier (CC) aggregation. Furthermore, the invention is also related to the implementation of these methods by hardware and their implementation in software. The invention proposes procedures that allow the eNodeB to recognize the power usage status of a UE in a communication system using carrier aggregation. The UE indicates to the eNodeB, when the UE is close to using its total maximum UE transmit power or when it has exceeded same. This is achieved by the UE including indicator(s) and/or new MAC CEs to one or more protocol data units transmitted on respective component carriers within a single sub-frame that is providing the eNodeB with power status information. The MAC CEs may report a per-UE power headroom. Alternatively, the MAC CEs may report per-CC power headrooms and/or power reductions applied to the respective uplink CCs.
Abstract:
The disclosure relates to methods for improving the DRX operation of a UE by introducing an additional DRX wake-up cycle, which runs in parallel to the short and/or long DRX cycle. The DRX wake-up cycle defines time intervals after which the UE starts monitoring the PDCCH for a wake-up duration of time; the UE does not perform any other operation during the wake-up duration apart from monitoring the PDCCH. The time intervals of the wake-up cycle between the wake-up durations are preferably shorter than the one of the DRX long cycle, and may have the same or a shorter length than the ones of the DRX short cycle. The wake-up duration may be as long as the on-duration of the DRX short/long cycle, or may be preferably much shorter, such as only one or a few subframes.
Abstract:
The invention relates to a new structure of a control channel region within a sub-frame of a 3GPP-based based communication system using OFDM in the downlink. This new structure of a control channel region is inter alia particularly suitable for conveying physical downlink control channel information from a donor eNodeB to a relay node. The control channel region is divided in CCEs that have equal size irrespective of the presence of further cell-specific and/or UE-specific reference signals within the control channel region. This is achieved by dividing the control channel region in plural sub-CCEs that are combined to CCEs all having equal size (in terms of resource elements that can be used for the signaling of control information). The control channel region is divided in the frequency domain and/or time domain in a FDM respectively TDM fashion in order to obtain the sub-CCEs.
Abstract:
The invention relates to methods for informing an eNodeB on the transmit power status of a user equipment in a mobile communication system using component carrier (CC) aggregation. Furthermore, the invention is also related to the implementation of these methods by hardware and their implementation in software. The invention proposes procedures that allow the eNodeB to recognize the power usage status of a UE in a communication system using carrier aggregation. The UE indicates to the eNodeB, when the UE is close to using its total maximum UE transmit power or when it has exceeded same. This is achieved by the UE including indicator(s) and/or new MAC CEs to one or more protocol data units transmitted on respective component carriers within a single sub-frame that is providing the eNodeB with power status information. The MAC CEs may report a per-UE power headroom. Alternatively, the MAC CEs may report per-CC power headrooms and/or power reductions applied to the respective uplink CCs.
Abstract:
The disclosure relates to methods for improving the DRX operation of a UE by introducing an additional DRX wake-up cycle, which runs in parallel to the short and/or long DRX cycle. The DRX wake-up cycle defines time intervals after which the UE starts monitoring the PDCCH for a wake-up duration of time; the UE does not perform any other operation during the wake-up duration apart from monitoring the PDCCH. The time intervals of the wake-up cycle between the wake-up durations are preferably shorter than the one of the DRX long cycle, and may have the same or a shorter length than the ones of the DRX short cycle. The wake-up duration may be as long as the on-duration of the DRX short/long cycle, or may be preferably much shorter, such as only one or a few subframes.
Abstract:
The present invention relates to a method for receiving control information within a subframe of a multi-carrier communication system supporting carrier aggregation, the method comprising the following steps performed at a receiving node: performing a blind detection for the control information within a search space by means of a first search pattern, wherein the first search pattern is one of a plurality of search patterns, each of the plurality of search patterns comprising a plurality of candidates distributed on any of a plurality of aggregation levels, and wherein the plurality of search patterns further comprises a second search pattern whose candidates are non-overlapping the candidates of the first search pattern on the same aggregation levels.
Abstract:
The disclosure relates to methods for improving the DRX operation of a UE by introducing an additional DRX wake-up cycle, which runs in parallel to the short and/or long DRX cycle. The DRX wake-up cycle defines time intervals after which the UE starts monitoring the PDCCH for a wake-up duration of time; the UE does not perform any other operation during the wake-up duration apart from monitoring the PDCCH. The time intervals of the wake-up cycle between the wake-up durations are preferably shorter than the one of the DRX long cycle, and may have the same or a shorter length than the ones of the DRX short cycle. The wake-up duration may be as long as the on-duration of the DRX short/long cycle, or may be preferably much shorter, such as only one or a few subframes.
Abstract:
The invention relates to a new structure of a control channel region within a sub-frame of a 3GPP-based based communication system using OFDM in the downlink. This new structure of a control channel region is inter alia particularly suitable for conveying physical downlink control channel information from a donor eNodeB to a relay node. The control channel region is divided in CCEs that have equal size irrespective of the presence of further cell-specific and/or UE-specific reference signals within the control channel region. This is achieved by dividing the control channel region in plural sub-CCEs that are combined to CCEs all having equal size (in terms of resource elements that can be used for the signaling of control information). The control channel region is divided in the frequency domain and/or time domain in a FDM respectively TDM fashion in order to obtain the sub-CCEs.
Abstract:
This invention relates to the proposal of component carrier (de)activation message that is allowing a activation or deactivation of one or more component carriers in the uplink or downlink. Furthermore, the invention relates to the use of the new component carrier (de)activation message in methods for (de)activation of downlink component carrier(s) configured for a mobile terminal, a base station and a mobile terminal. To enable efficient and robust (de)activation of component carriers, the invention proposes to use component carrier-specific or cell-RNTI(s) for the scrambling of the CRC of the component carrier (de)activation message, and to explicitly indicate the intended recipient of the component carrier (de)activation message in a corresponding field in the message. Furthermore, the invention further proposes different designs of the component carrier (de)activation message and further uses thereof, so as to trigger CQI reporting and/or SRS transmission by a mobile terminal.
Abstract:
Methods inform an eNodeB on the transmit power status of a user equipment in a mobile communication system using component carrier (CC) aggregation. Also described is an implementation of these methods by hardware and in software. The invention proposes procedures that allow the eNodeB to recognize the power usage status of a UE in a communication system using carrier aggregation. The UE indicates to the eNodeB when the UE is close to using its total maximum UE transmit power or when it has exceeded the same. This is achieved by the UE including indicator(s) and/or new MAC CEs to one or more protocol data units transmitted on respective component carriers within a single sub-frame that is providing the eNodeB with power status information. The MAC CEs may report a per-UE power headroom. Alternatively, the MAC CEs may report per-CC power headrooms and/or power reductions applied to the respective uplink CCs.