Abstract:
A scan driving circuit of a display device includes a first output terminal electrically connected to a first scan line, a second output terminal electrically connected to a second scan line, a first masking circuit electrically connecting the first output terminal and the second output terminal and outputting, as a first scan signal, a second scan signal to the first output terminal, a driving circuit outputting the second scan signal to the second output terminal in response to clock signals and a carry signal, and a second masking circuit masking the second scan signal to a predetermined level in response to the second masking signal, wherein the first masking circuit electrically disconnects the first output terminal from the second output terminal in response to a first masking signal.
Abstract:
A scan driver includes: a plurality of stages, each stage including: a logic circuit configured to transfer an input signal to a first node in response to a first clock signal, and to bootstrap the first node in response to a second clock signal; a carry output circuit configured to output the second clock signal as a carry signal that is provided as the input signal for a next stage in response to a voltage of the bootstrapped first node; and a masking controller configured to receive a masking signal and the carry signal, and to output the masking signal as a scan signal provided to a pixel row corresponding to the each stage in response to the carry signal.
Abstract:
An all-around display device according to embodiments includes a display panel including first to J-th display areas having pixels and respectively corresponding to surfaces, a gate driver for providing a gate signal to the display panel through first to N-th gate lines, and for providing an initialization signal to the display panel through first to N-th initialization lines, an emission driver for providing an emission control signal to the display panel through first to N-th emission control lines, a display area control driver for providing first to J-th global control signals respectively corresponding to the first to J-th display areas to selectively determine light emission of each of the first to J-th display areas, and a data driver for providing a data voltage to the display panel through data lines, wherein J is an integer that is greater than 1, and N is an integer that is greater than J.
Abstract:
A pixel circuit includes a first organic light emitting diode (OLED), a second OLED, a storage unit coupled to a data line, the storage unit including a first capacitor configured to store at least one of a first data signal and a second data signal received via the data line, a first driver including a second capacitor configured to store the first data signal received via the storage unit, and a first transistor configured to control an amount of a current supplied to the first OLED in response to a voltage stored in the second capacitor, and a second driver including a third capacitor configured to store the second data signal received via the storage unit, and a second transistor configured to control an amount of a current supplied to the second OLED in response to a voltage stored in the third capacitor.
Abstract:
In an aspect, an organic light-emitting device including a first electrode, a second electrode facing the first electrode, and an organic layer between the first electrode and the second electrode, wherein the organic layer includes a light-emitting layer which emits light in a visible spectrum and light in a non-visible spectrum is provided.
Abstract:
A scan driving circuit includes: a driving circuit configured to output a scan signal to an output terminal in response to clock signals and a carry signal; and a masking circuit configured to stop the driving circuit from outputting the scan signal in response to a masking signal and a signal indicating an operating state of the driving circuit.
Abstract:
A display panel of a display device includes: first light emitting elements located in a first row, second light emitting elements located in a second row adjacent to the first row, first pixel circuits located in the first row, and second pixel circuits located in the second row. Each of the first pixel circuits drives a first light emitting element, located in a column the same as a column in which the each of the first pixel circuits is located, among the first light emitting elements. At least one second pixel circuit of the second pixel circuits drives a second light emitting element, located in a column different from a column in which the at least one second pixel circuit is located, among the second light emitting elements.
Abstract:
A scan driving circuit of a display device includes a first output terminal electrically connected to a first scan line, a second output terminal electrically connected to a second scan line, a first masking circuit electrically connecting the first output terminal and the second output terminal and outputting, as a first scan signal, a second scan signal to the first output terminal, a driving circuit outputting the second scan signal to the second output terminal in response to clock signals and a carry signal, and a second masking circuit masking the second scan signal to a predetermined level in response to the second masking signal, wherein the first masking circuit electrically disconnects the first output terminal from the second output terminal in response to a first masking signal.
Abstract:
A display device includes a display panel, a data driving circuit, a scan driving circuit, and a driving controller. The driving controller receives an image signal and a control signal and controls the data and scan driving circuits to display an image on the display panel. The driving controller divides the display panel into first and second display regions based on the image signal, and outputs start and masking signals indicating starts of one frame and the second display region, respectively. First and second frames have first and second durations, respectively. The scan driving circuit sequentially drives scan lines in synchronization with the start signal and stop the driving of scan lines, corresponding to the second display region, of the scan lines, in response to the masking signal.
Abstract:
A display device includes a display panel which displays an image during a plurality of driving frames, a panel driver which drives the display panel, and a driving controller which controls a driving operation of the panel driver. The driving controller divides the display panel into a first display area and a second display area based on an image signal. Each of the plurality of driving frames includes a full frame in which the first display area and the second display area are driven, and a plurality of partial frames in which only the first display area is driven. A number of the plurality of partial frames included in each of the plurality of driving frames is changed.