Abstract:
The present invention relates to a 5G or pre-5G communication system which is to be provided to support high data throughput beyond a 4G communication system such as LTE. The communication method for a terminal in a wireless communication system supporting carrier aggregation according to the present invention comprises the steps of: confirming data transmission between different carriers is carried out on the basis of cellular and device-to-device (D2D) communication; reducing the transmission power for a D2D communication-based data transmission to a configured value; and, if no cellular communication-based data transmission occurs during a set time, then restoring the reduced transmission power for the D2D communication-based data transmission.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system to be provided to support a data transmission rate higher than that of a 4-G communication system, such as LTE, and subsequent communication systems. An apparatus according to one embodiment of the present invention can comprise: a first grouping unit for performing repeated decoding by using an outer decoder and an inner decoder, and grouping, in correspondence to a decoding order, a bit stream, which is received from the outer decoder, from a receiver of a system using binary irregular repeat partial accumulate codes to the inner decoder device; an LLR symbol selection unit for calculating indices of grouped bits having the maximum probability value among the grouped bits, and selecting and outputting a predetermined number of grouped bit LLR values by using the indices of the grouped bits having the maximum probability value; an LLR symbol conversion unit for converting the grouped bit LLR values outputted from the LLR symbol selection unit into symbol LLR values, and outputting the same; a Bahl-Cocke-Jelinek-Raviv (BCJR) processing unit for performing a BCJR algorithm operation on the symbol LLR values; a bit LLR calculation unit for converting an output of the BCJR processing unit into bit LLR values; and a second bit grouping unit for grouping the bit LLR values by predetermined bit units.
Abstract:
The present invention relates to a scheduling method between terminals for a search resource allocation in direct device to device communication and a device thereof. The present invention relates to, as a search resource allocation method of a terminal which performs device to device (D2D) communication, a proximity searching method and a device thereof, and the method comprises the steps of: transmitting and receiving a signal through a wireless resource determined so as to explicitly or implicitly transmit and receive a contention index of the terminal; selecting a search resource on the basis of a response signal when the response signal is received through the wireless resource; and performing a search for the D2D communication by using the selected search resource.
Abstract:
A method and apparatus for exchanging information between devices for use in the pairing process for Device To Device (D2D) communication is provided. A signal transmission/reception method of a device in a mobile communication system includes determining a resource for the device to transmit a pairing signal, transmitting a discovery signal including information on the determined resource, pairing with a neighbor device that received the discovery signal through the resource indicated by the resource information, and communicating data signals with the paired neighbor device. The information exchange method and apparatus for D2D communication is capable of preventing a plurality of devices from attempting pairing on the same frequency simultaneously, thereby improving pairing efficiency and reducing power consumption of the device.
Abstract:
Disclosed are a communication method and a terminal for power saving in a UE-relay operation by which power consumption in a device relay is reduced using D2D discovery. The relay communication method of a terminal is provided. The method includes performing relay communication to serve at least one other terminal; performing a device-to-device (D2D) discovery operation to detect a nearby relay terminal during the relay communication; and if the nearby relay terminal that satisfies a predetermined condition is detected as a result of the D2D discovery operation, terminating service to at least the one other terminal.