Abstract:
A wireless power transmitting device for wirelessly transmitting power to an electronic device is provided. The wireless power transmitting device includes a first coil configured to have a first number of windings and to receive power to be transmitted to the electronic device, thereby generating a magnetic field; and a second coil configured to have a second number of windings, which is different from the first number of windings, wherein an induced electromotive force generated, based on the magnetic field generated from the first coil, in the second coil is used for operation of at least one hardware component of the wireless power transmitting device, and wherein a ratio of a voltage applied to the first coil to a voltage applied to the second coil is determined by a ratio of the first number of windings to the second number of windings.
Abstract:
A wireless power transmitter configured to wirelessly transmit power to an electronic device is provided. The wireless power transmitter includes a power transmission antenna including a plurality of patch antennas for wirelessly transmitting power, a sensor, and a processor, wherein the processor may be configured to create a first clutter map representing a reflection characteristic of an object positioned around the wireless power transmitter based on, at least, first data obtained by the sensor during a first period, store the first clutter map, compare a difference between the first clutter map and second data obtained by the sensor during a second period with data contained in the first clutter map, create a second clutter map corresponding to the second period based on a result of the comparison, determine a position of an organism using the second data and the second clutter map, and control the power transmission antenna such that a magnitude of the RF wave is less than a predetermined value based on the position of the organism.
Abstract:
A code reading method and a radar system using a short-range millimeter wave (mmWave) radar are provided. The method includes transmitting a mmWave radar signal to a target object from a radar system and receiving a reflection wave signal reflected on the target object, extracting reflection signal strengths for a plurality of line codes constituting the target object from the reflection wave signal, compensating for the reflection signal strengths considering a difference in antenna gain between the plurality of line codes as per an antenna radiation pattern of the radar system, forming a radar image using the compensated reflection signal strengths, and reading a binary code from the radar image.
Abstract:
An electronic device and method for wirelessly receiving power are provided. The electronic device includes a wired power interface; a power receiving circuit; and a control circuit configured to control the power receiving circuit to wirelessly receive power from a wireless power transmitting device; and provide the received power to an external electronic device through the wired power interface.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A terminal and method are provided for data signal transmission in a wireless communication system. The method includes receiving identification information of a band designated for the terminal; receiving a data signal generated based on resource allocation information on the band and an orthogonal frequency division multiple access (OFDMA) scheme; and demodulating and decoding the data signal based on the resource allocation information.
Abstract:
A semiconductor memory cell array is provided which includes a first memory cell array area including first group memory cells arranged in a chip in a matrix of rows and columns and having a first operating speed; and a second memory cell array area including second group memory cells arranged in the chip in a matrix of rows and columns and having a second operating speed different from the first operating speed. The first and second memory cell array areas are accessed by addressing of a DRAM controller.
Abstract:
A method of and device for controlling a head-mounted display device. The method includes detecting a touch input on at least one temple frame provided on the head-mounted display device; detecting movement information of the head-mounted display device; and controlling screen locking of the head-mounted display device according to the touch input on the at least one temple frame and the movement information.