Abstract:
An apparatus for measuring bio-information in a non-invasive manner includes: a pulse wave sensor configured to measure a plurality of pulse wave signals having different wavelengths from an object; a contact pressure sensor configured to measure contact pressure of the object while the plurality of pulse wave signals are measured; and a processor configured to obtain an oscillometric waveform based on the contact pressure and the plurality of pulse wave signals having the different wavelengths, and obtain bio-information based on the oscillometric waveform.
Abstract:
A blood pressure measuring apparatus includes a sensor configured to acquire a user image of a user, and a processor configured to determine, based on the user image, relative position information of a blood pressure measuring point of the user, the relative position information including a distance between a reference point of the user and the blood pressure measuring point, and measure a blood pressure of the user by correcting an effect of a hydrostatic pressure on the blood pressure, based on the relative position information that is determined.
Abstract:
An apparatus for estimating biometric information is provided. According to one exemplary embodiment, the apparatus may include a sensor comprising an electrocardiogram (ECG) sensor configured to measure an ECG signal of a user and a pulse wave sensor configured to measure two or more pulse wave signals at two or more measurement sites of the user; and a processor configured to obtain biometric information based on the ECG signal and the two or more pulse wave signals measured by the sensor.
Abstract:
Provided is a technology for measuring a user's blood pressure by using light sources, in which the blood pressure measuring apparatus includes: a light emitter configured to emit one or more lights having different penetration characteristics toward a user; a light receiver configured to receive the lights that have penetrated through the user, and acquire photo-plethysmography (PPG) signals from the received lights; and a blood pressure measurer configured to measure a phase difference between the acquired PPG signals, and measure a blood pressure based on the measured phase difference.
Abstract:
A virtual reality apparatus, a feedback apparatus, and a system and method for providing a realistic service. The virtual reality apparatus for providing a realistic service in association with at least one feedback apparatus includes: a video analyzer configured to analyze a video being played; a video feedback information generator configured to generate realistic feedback information based on the analyzing by the video analyzer; and a feedback information transmitter configured to transmit the generated realistic feedback information to the at least one feedback apparatus.
Abstract:
An apparatus for performing user recognition may include: a first sensor configured to measure health information from a user; a second sensor configured to measure a pulse wave signal from the user; and a processor configured to obtain oxygen saturation based on the pulse wave signal, to recognize the user based on an oxygen saturation pattern of the obtained oxygen saturation, and to update the measured health information as health information of the recognized user.
Abstract:
An apparatus for estimating bio-information according to an embodiment includes: a sensor that measures a pulse wave signal from an object and contact pressure of the object; and a processor that obtains an oscillometric envelope based on an amplitude of the pulse wave signal and the contact pressure, and estimates bio-information based on a center of mass of a phase of contact pressure of the obtained oscillometric envelope.
Abstract:
An apparatus for estimating blood pressure includes: a sensor, and a processor configured to estimate blood pressure based on a PPG signal and a contact pressure signal measured by the sensor. The sensor includes: a transparent elastic body; a first polarizing film provided on a surface of the transparent elastic body and configured to come into contact with the object; a light source provided under the transparent elastic body and configured to emit light toward the object; a first detector and a second detector provided under the transparent elastic body and configured to detect light, passing through the first polarizing film after being emitted by the light source and scattered or reflected from the object, to measure the PPG signal; and a second detector provided under the transparent elastic body and configured to detect light, not passing through the first polarizing film, to measure the contact pressure signal.
Abstract:
An apparatus for estimating bio-information includes: a sensor part configured to obtain contact pressure of a contact surface contacted by an object, and configured to obtain a contact image of the object that contacts the contact surface; and a processor configured to obtain a pulse wave signal of a region of interest based on the contact image, and configured to estimate bio-information based on the obtained pulse wave signal and the contact pressure.
Abstract:
An apparatus for estimating bio-information is provided. According to an embodiment of the present disclosure, the apparatus for estimating bio-information includes: a first sensor configured to measure a first pulse wave signal of a first wavelength and a second pulse wave signal of a second wavelength from an object; a second sensor configured to measure at least one of a force or a pressure applied to the object; and a processor configured to: generate an oscillometric waveform envelope based on the first pulse wave signal of the first wavelength and the at least one of the force or the pressure applied to the object; obtain a feature value from the oscillometric waveform envelope; predict a size of a measured blood vessel based on the second pulse wave signal of the second wavelength; correct the feature value based on the size of the measured blood vessel; and estimate the bio-information based on correcting the feature value.