Abstract:
A lighting device may be provided that includes a light emitter including a plurality of LEDs; a reflective plate disposed on the light emitter; a diffuser plate disposed in a direction in which light emitted from the LED is irradiated; a case including the light emitter disposed therein and including a bottom plate and a side wall extending from both side ends of the bottom plate; and a connecting member extending from the side wall of the case and including a bracket coupler on at least one side thereof. The light emitter is disposed between the bottom plate of the case and the diffuser plate.
Abstract:
A backlight unit is disclosed. The backlight unit includes a light emitting device array including a plurality of light emitting devices, an optical sheet to transmit light emitted from the light emitting device array, a frame to support the light emitting device array and the optical sheet, and at least two heat dissipating members placed on the frame in an emission direction of light from the light emitting device array. The heat dissipating member disposed at the center has a greater area than the heat dissipating member disposed at the perimeter.
Abstract:
Disclosed is a radiation shielding member having improved radiation absorption performance, including 80.0˜99.0 wt % of a polymer matrix or metal matrix and 1.0˜20.0 wt % of a radiation shielding material in the form of nano-particles having a size of 10˜900 nm as a result of pulverization, wherein the radiation shielding material is homogeneously dispersed in the matrix through powder mixing or melt mixing after treatment with a surfactant which is the same material as the matrix or which has high affinity for the matrix. A preparation method thereof is also provided. This radiation shielding member including the nano-particles as the shielding material further increases the collision probability of the shielding material with radiation, compared to conventional shielding members including micro-particles, thus reducing the mean free path of radiation in the shielding member, thereby exhibiting superior radiation shielding effects. At the same density, the shielding member has reduced thickness and volume and is thus lightweight. The porosity of the shielding member is minimized, thereby preventing the deterioration of shielding effects and properties of the shielding member and realizing applicability in spent fuel managing transport/storage environments and the like.