Abstract:
A semiconductor apparatus has a plurality of chips stacked therein, and generation timing of read control signals for controlling read operations of the plurality of stacked chips is controlled such that times after a read command is applied to when data are outputted from respective chips are made to substantially correspond to one another.
Abstract:
A semiconductor apparatus may include a master chip, first to nth slave chips, first to nth slave chip ID generating units, and a master chip ID generating unit. The first to nth slave chip ID generating units are disposed respectively in the first to nth slave chips and connected in series to each other. Each of the first to nth slave chip ID generating units is configured to add a predetermined code value to an mth operation code to generate an (m+1)th operation code. The master chip ID generating unit is disposed in the master chip to generate a variable first operation code in response to a select signal. Here, ‘n’ is an integer that is equal to or greater than 2, and ‘m’ is an integer that is equal to or greater than 1 and equal to or smaller than ‘n’.
Abstract:
A semiconductor buffer circuit that operates stably against PVT fluctuation is disclosed. The disclosed semiconductor buffer unit of the present invention includes: a detecting block configured to generate a plurality of code signals by detecting an external voltage, using a plurality of reference voltages; and a buffer unit configured to receive an input signal and the plurality of code signals and, based on the code signals, to generate an output signal, wherein a consumption of a driving current of the buffer unit is controlled based on the code signals.
Abstract:
A semiconductor apparatus has a plurality of chips stacked therein, and generation timing of read control signals for controlling read operations of the plurality of stacked chips is controlled such that times after a read command is applied to when data are outputted from respective chips are made to substantially correspond to one another.
Abstract:
A circuit for testing a semiconductor apparatus includes a test voltage applying unit configured to apply a test voltage to a first end of a through-silicon via (TSV) in response to a test mode signal and a detecting unit configured to be connected to a second end of the TSV and detect a current outputted from the second end of the TSV.
Abstract:
An internal voltage generation circuit of a semiconductor memory device controls a dead zone voltage, in which the driving unit that supplies a power supply voltage, does not need to operate. An internal voltage having a dead zone is determined by first and second driving signals based on a level of a reference voltage, and by selectively supplying first and second voltages by means of the first and second driving signals.