Abstract:
A semiconductor apparatus has a plurality of chips stacked therein. Read control signals for controlling read operations of the plurality of chips are synchronized with a reference clock such that the time taken from the application of a read command to the output of data for each of the plurality of chips is maintained substantially the same.
Abstract:
A semiconductor apparatus has a plurality of chips stacked therein, and generation timing of read control signals for controlling read operations of the plurality of stacked chips is controlled such that times after a read command is applied to when data are outputted from respective chips are made to substantially correspond to one another.
Abstract:
A semiconductor apparatus has a plurality of chips stacked therein, and generation timing of read control signals for controlling read operations of the plurality of stacked chips is controlled such that times after a read command is applied to when data are outputted from respective chips are made to substantially correspond to one another.
Abstract:
A semiconductor integrated circuit includes a plurality of dies, wherein each of the dies is configured to enable a power circuit provided therein according to a power control signal, in a state in which the die was determined to be a good die or a fail die.
Abstract:
A semiconductor apparatus comprises a power-up signal generation section configured to generate a power-up signal, a driver configured to drive and output the power-up signal, and a main circuit block configured to perform predetermined functions in response to an output from the driver, wherein the power-up signal generation section and an input terminal of the driver are connected by a disconnectable element.
Abstract:
A resistance calibration code generating apparatus includes a code calibration unit configured to calibrate and output code values of a resistance calibration code during predetermined cycles of a calibration clock, which are determined by a code calibration time control command, and a calibration clock generating unit configured to output the calibration clock using a code calibration command.
Abstract:
A semiconductor apparatus having a plurality of semiconductor chips is configured in such a manner that the plurality of semiconductor chips share one or more source voltages generated in one of the plurality of semiconductor chips.
Abstract:
An internal voltage generation circuit of a semiconductor memory device controls a dead zone voltage, in which the driving unit that supplies a power supply voltage, does not need to operate. An internal voltage having a dead zone is determined by first and second driving signals based on a level of a reference voltage, and by selectively supplying first and second voltages by means of the first and second driving signals.
Abstract:
An apparatus for supplying an overdriving signal in a memory apparatus. The apparatus includes: a voltage detecting block that outputs a plurality of detection signals according to the level of an external voltage, and a pulse generator that outputs the overdriving signals having different pulse widths according to the plurality of detection signals.
Abstract:
A semiconductor memory device generates a control signal for regulating a potential of an internal power voltage when an extended mode register is set to adjust an operating speed and a tWR (time to write recovery) of a chip. The semiconductor memory device comprises an extended mode register setting unit and an internal power voltage generating unit. When an internal circuit enters into a specific mode for high-speed operation, the extended mode register setting unit outputs a plurality of internal power control signals to regulate a potential of an internal power voltage of the internal circuit. The internal power voltage generating unit generates an internal power voltage by regulating the potential of the internal power voltage in response to the plurality of internal power control signals.