Abstract:
A light-emitting element with a lower voltage and higher emission efficiency is provided. The light-emitting element includes a first organic compound, a second organic compound, and a guest material. The LUMO level of the first organic compound is lower than the LUMO level of the second organic compound, and a difference between them is larger than 0 eV and smaller than or equal to 0.5 eV. Furthermore, the HOMO level of the first organic compound is lower than the HOMO level of the second organic compound. The guest material has a function of converting triplet excitation energy into light emission. The first organic compound and the second organic compound form an exciplex.
Abstract:
A light-emitting element with a lower voltage and higher emission efficiency is provided. The light-emitting element includes a first organic compound, a second organic compound, and a guest material. The LUMO level of the first organic compound is lower than the LUMO level of the second organic compound, and a difference between them is larger than 0 eV and smaller than or equal to 0.5 eV. Furthermore, the HOMO level of the first organic compound is lower than the HOMO level of the second organic compound. The guest material has a function of converting triplet excitation energy into light emission. The first organic compound and the second organic compound form an exciplex.
Abstract:
A light-emitting element having high emission efficiency is provided. A light-emitting element having a low driving voltage is provided. A novel compound which can be used for a transport layer or as a host material or a light-emitting material of a light-emitting element is provided. A novel compound with a benzofuropyrimidine skeleton is provided. Also provided is a light-emitting element which includes the compound with the benzofuropyrimidine skeleton between a pair of electrodes.
Abstract:
An organometallic iridium complex that has high emission efficiency and a long lifetime and emits deep red light (emission wavelength: around 700 nm) is provided. The organometallic iridium complex has a ligand that is represented by General Formula (G0) and has at least a dimethyl phenyl group and a quinoxaline skeleton. In the formula, R1 to R3 separately represent an alkyl group having 1 to 6 carbon atoms, a phenyl group, or a phenyl group having an alkyl group having 1 to 6 carbon atoms as a substituent.
Abstract:
To provide a light-emitting element which uses a fluorescent material as a light-emitting substance and has higher luminous efficiency. To provide a light-emitting element which includes a mixture of a thermally activated delayed fluorescent substance and a fluorescent material. By making the emission spectrum of the thermally activated delayed fluorescent substance overlap with an absorption band on the longest wavelength side in absorption by the fluorescent material in an S1 level of the fluorescent material, energy at an S1 level of the thermally activated delayed fluorescent substance can be transferred to the S1 of the fluorescent material. Alternatively, it is also possible that the S1 of the thermally activated delayed fluorescent substance is generated from part of the energy of a T1 level of the thermally activated delayed fluorescent substance, and is transferred to the S1 of the fluorescent material.
Abstract:
A multicolor light-emitting element using fluorescence and phosphorescence, which has a small number of manufacturing steps owing to a relatively small number of layers to be formed and is advantageous for practical application can be provided. In addition, a multicolor light-emitting element using fluorescence and phosphorescence, which has favorable emission efficiency is provided. A light-emitting element which includes a light-emitting layer having a stacked-layer structure of a first light-emitting layer exhibiting light emission from a first exciplex and a second light-emitting layer exhibiting phosphorescence is provided.
Abstract:
As a novel substance having a novel skeleton, an organometallic complex having high emission efficiency and improved color purity is provided. The color purity is improved by reducing the half width of an emission spectrum. The organometallic complex is represented by General Formula (G1). In General Formula (G1), at least one of R1 to R4 represents a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, and the others each independently represent hydrogen or a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms. Note that the case where all of R1 to R4 represent alkyl groups each having 1 carbon atom is excluded. Further, R5 to R9 each independently represent hydrogen or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
Abstract:
A novel compound and a light-emitting element with high emission efficiency and a long lifetime are provided. The novel compound includes a benzofuropyrazine skeleton or a benzothienopyrazine skeleton, and each of a benzene ring and a pyrazine ring in the benzofuropyrazine skeleton or the benzothienopyrazine skeleton independently includes a substituent with a total number of carbon atoms of 6 to 100 inclusive. The light-emitting element includes the compound.
Abstract:
A light-emitting element containing a fluorescent material and having high emission efficiency is provided. The light-emitting element contains the fluorescent material and a host material. The host material contains a first organic compound and a second organic compound. The first organic compound and the second organic compound can form an exciplex. The minimum value of a distance between centroids of the fluorescent material and at least one of the first organic compound and the second organic compound is 0.7 nm or more and 5 nm or less.
Abstract:
A novel organic compound is provided. That is, a novel organic compound that is effective in improving the element characteristics and reliability is provided. An organic compound has a benzonaphthofuran skeleton and a triazine skeleton and is represented by General Formula (G1) below. (In the formula, Ar1, Ar2, and Ar3 separately represent a substituted or unsubstituted phenylene group, and each of m and n is independently 0 or 1. R1 and R2 separately represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted methylfluorenyl group, a substituted or unsubstituted dimethylfluorenyl group, a substituted or unsubstituted spirofluorenyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted phenanthrenyl group. B1 to B3 separately represent nitrogen or carbon, and at least one of B1 to B3 represents nitrogen. In addition, A is represented by General Formula (G1-1). Any one of R3 to R12 is bonded to Ar1, and the others separately represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted methylfluorenyl group, a substituted or unsubstituted dimethylfluorenyl group, a substituted or unsubstituted spirofluorenyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted phenanthrenyl group. Furthermore, Q represents S or O.)