Abstract:
Provided are a lanthanum target for sputtering which has a Vickers hardness of 60 or more and no spotty macro patterns on the surface, and a method of producing a lanthanum target for sputtering, wherein lanthanum is melted and cast to produce an ingot, the ingot is subject to knead forging at a temperature of 300 to 500° C. and subsequently subject to upset forging at 300 to 500° C. to form the shape into a rough target shape, and this is additionally subject to machining to obtain a target. This invention aims to offer technology for efficiently and stably providing a lanthanum target for sputtering that has no spotty macro patterns on the surface, and a method of producing the same.
Abstract:
Provided is a titanium target for sputtering having a Shore hardness Hs of 20 or more and a basal plane orientation ratio of 70% or less. In the titanium target for sputtering, the purity of titanium is 99.995 mass % or more, excluding gas components. It is an object of the present invention to provide a high-quality titanium target for sputtering, in which impurities are reduced, and which can prevent occurrence of cracking or breaking in high-power sputtering (high-rate sputtering), stabilize sputtering characteristics, and effectively suppress occurrence of particles during formation of a film.
Abstract:
A high-purity titanium target for sputtering containing 0.5 to 5 mass ppm of S as an additive component, wherein the purity of the target excluding additive components and gas components is 99.995 mass percent or higher. An object of this invention is to provide a high-quality titanium target for sputtering which is free from fractures and cracks during high-power sputtering (high-rate sputtering) and is capable of stabilizing the sputtering characteristics.
Abstract:
The object of this invention is to provide a high quality titanium target for sputtering capable of reducing the impurities that cause generation of particles and abnormal discharge, which is free from fractures and cracks during high power sputtering (high rate sputtering), and capable of stabilizing the sputtering properties and effectively suppressing the generation of particles upon deposition. This invention is able to solve foregoing problems using a high purity titanium target for sputtering containing, as additive components, 3 to 10 mass ppm of S and 0.5 to 3 mass ppm of Si, and in which the purity of the target excluding additive components and gas components is 99.995 mass percent or higher.
Abstract:
The object of this invention is to provide a high quality titanium target for sputtering capable of reducing the impurities that cause generation of particles and abnormal discharge, which is free from fractures and cracks during high power sputtering (high rate sputtering), and capable of stabilizing the sputtering properties and effectively suppressing the generation of particles upon deposition.This invention is able to solve foregoing problems using a high purity titanium target for sputtering containing, as additive components, 3 to 10 mass ppm of S and 0.5 to 3 mass ppm of Si, and in which the purity of the target excluding additive components and gas components is 99.995 mass percent or higher.
Abstract:
Provided is a hollow cathode sputtering target comprising an inner bottom face having a surface roughness of Ra≦1.0 μm, and preferably Ra≦0.5 μm. This hollow cathode sputtering target has superior sputter film evenness (uniformity), generates few arcing and particles, is capable of suppressing the peeling of the redeposited film on the bottom face, and has superior deposition characteristics.
Abstract:
The present invention relates to a substrate having an organic metal complex bonded on the surface thereof, which is prepared by the vapor deposition of a sulfur atom onto a substrate followed by bonding of an organic metal complex such as tetrakis-triphenylphosphine palladium [Pd(PPh3)4] to the surface of the substrate; a substrate bonded transition metal catalyst using said substrate; and a method for the preparation thereof. The above substrate and metal catalyst allow the solution of some problems with respect to the safety and stability of an organic metal complex in its use, the removal of trace amounts of metals in a reaction product, waste water treatment and the like.