Abstract:
The present invention provides a fractional frequency divider, wherein the fractional frequency divider includes a plurality of registers, a counter, a control signal generator and a clock gating circuit. Regarding the plurality of registers, at least a portion of the registers are set to have values The counter is configured to sequentially generate a plurality of counter values, wherein the plurality of counter values correspond to the at least a portion of the registers, respectively, and the plurality of counter values are generated repeatedly The control signal generator is configured to generate a control signal based on the received counter value and the value of the corresponding register. The clock gating circuit is configured to refer to the control signal to mask or not mask an input clock signal to generate an output clock signal.
Abstract:
The present invention provides a fractional frequency divider, wherein the fractional frequency divider includes a plurality of registers, a control signal generator and a clock gating circuit. Regarding the plurality of registers, at least a portion of the registers are set to have values. The control signal generator is configured to generate a control signal based on an input clock signal and values in the at least a portion of the registers, wherein the control generator sequentially generates the control signal during each cycle of the input clock signal. The clock gating circuit is configured to refer to the control signal to mask or not mask the input clock signal to generate an output clock signal.
Abstract:
A method for performing storage space management, an associated data storage device, and a controller thereof are provided. The method includes: receiving an identify controller command from a host device; in response to the identify controller command, returning a reply to the host device to indicate that a plurality of logical block address (LBA) formats are supported, where the plurality of LBA formats are related to access of a non-volatile (NV) memory, and the plurality of LBA formats include a first LBA format and a second LBA format; receiving a first namespace (NS) management command from the host device; in response to the first NS management command, establishing a first NS adopting the first LBA format; receiving a second NS management command from the host device; and in response to the second NS management command, establishing a second NS adopting the second LBA format.
Abstract:
A method for performing storage space management, an associated data storage device, and a controller thereof are provided. The method includes: receiving an identify controller command from a host device; in response to the identify controller command, returning a reply to the host device to indicate that a plurality of logical block address (LBA) formats are supported, where the plurality of LBA formats are related to access of a non-volatile (NV) memory, and the plurality of LBA formats include a first LBA format and a second LBA format; receiving a first namespace (NS) management command from the host device; in response to the first NS management command, establishing a first NS adopting the first LBA format; receiving a second NS management command from the host device; and in response to the second NS management command, establishing a second NS adopting the second LBA format.
Abstract:
A data storage system includes a processing circuit, a lookup table (LUT), and a decoding circuit. The processing circuit is arranged to receive a first logical block address (LBA) from a host. The LUT is arranged to store a storage address mapping to the first LBA. The decoding circuit is arranged to utilize the storage address to read storage data from a storing circuit, and decode a first data sector in the storage data according to an error checking and correcting code in the storage data, and the first data sector at least comprises a second LBA.
Abstract:
A security mechanism for a data storage device. The data storage device includes a nonvolatile memory and a control unit. The control unit uses a dynamic random access memory at a host side with an encryption mechanism when operating the nonvolatile memory. The control unit protects keys of the encryption mechanism within the data storage device to isolate the keys from the host.
Abstract:
An embodiment of a method for accessing a storage unit of a flash memory, performed by a processing unit, includes at least the following steps. After all messages within a RAID (Redundant Array of Independent Disk) group are programmed, it is determined whether a vertical ECC (Error Correction Code) within the RAID group has been generated. The processing unit directs a DMA (Direct Memory Access) controller to obtain the vertical ECC from a DRAM (Dynamic Random Access Memory) and store the vertical ECC to a buffer when the vertical ECC within the RAID group has been generated, thereby enabling the vertical ECC to be programmed to the storage unit.
Abstract:
An embodiment of a method for accessing a storage unit of a flash memory, performed by an arbiter, includes at least the following steps. After transmitting data to first storage units each connected to one of storage-unit access interfaces in a first batch, the arbiter issues a data write command to each first storage unit, thereby enabling each first storage unit to start a physical data programming. During the physical data programming of each first storage unit, data is transmitted to second storage units each connected to one of the storage-unit access interfaces in a second batch.