摘要:
A network management and monitoring application employs diagnostic messages for confirming network path connectivity and identifying and locating connectivity faults. Diagnostic messages similar to conventional “ping” and “traceroute” messages traverse the network along a prescribed path for which diagnostic feedback is desired. The application receives and analyzes return messages sent from network entities along the path to ascertain connectivity issues on the path. The application receives layer 3 identifiers such as IP addresses, however performs diagnostic operations such as continuity checks based on layer 2 identifiers such as MAC (Media Access Control) identifiers because certain network entities operate on L2 identifiers and would otherwise evade a continuity check based on layer 3 identifiers. The monitoring application therefore performs continuity diagnostics such as ping and traceroute operations using L2 identifiers, therefore pinpointing problems with an L2 network forwarding entity such as a bridge that lies between L3 entities such as routers.
摘要:
Techniques disclosed herein include systems and methods for providing a scalable solution to transmit edge IP Multicast sender information in a Shortest Path Bridging (SPB) network. Control information is exchanged between Ingress Backbone Edge Bridges and Egress Backbone Edge Bridges Such control messages do not cause path computations at Backbone Core Bridges within the SPB network. Such exchanges of control messages trigger sending SPB specific Intermediate System To Intermediate System (IS-IS) TLV control message with path computation information via IS-IS control messages. This second set of control messages is exchanged within the SPB network and includes source-specific multicast stream information that is used by Backbone Core Bridges to establish a multicast forward state and compute multicast forwarding paths. By separating edge and routing information, IP multicasting functionality within the SPB is provided while enabling scaling and new edge multicasting applications.
摘要:
A method and apparatus for routing multicast data across multiple multicast routing domains connected by a shortest path bridging (SPB) network is presented. A Shortest Path Bridging (SPB) edge router of an SPB network connected to a PIM network is configured as a Rendezvous Point (RP). A message is received at the RP, and in response, the RP forms a first data structure including multicast sender information. The RP floods the SPB network with a second message containing the first data structure, allocates an Identifier to the multicast stream, and sends a second data structure with sender information. An edge router with multicast receive interest responds with the second data structure with multicast receive interest information. As a result, a receiver in a second network has knowledge of devices in a first network such that multicast traffic is able to be routed between different networks connected to the SPB network.
摘要:
Techniques disclosed herein include systems and methods for improving efficiency of multicast state generation within Shortest Path Bridging (SPB) networks. Techniques include using an IS-IS TLV structure with new multicast state computation rules for SPB Networks. SPB Networks use a TLV field for the I-SID Address (and equivalent TLV fields defined in different IETF/IEEE drafts) and node nicknames to signal information that is used to compute a multicast state required to provide L2 Services over a given SPB Network. The I-SID Address TLV is set or filled to carry various items of information. These items of information can include Backbone Media Access Control (B-MAC), Virtual Local Area Network Identifier (VID), I-SID[Transmit, Receive Bit], etc.
摘要:
Techniques disclosed herein include systems and methods for improving multicast traffic operations in a Shortest Path Bridging (SPB) network by conveying bridging domain information of an incoming interface (IIF) when transporting multicast traffic over the SPB network. Techniques disclosed herein include modifying encapsulation packet header information of existing Mac-In-Mac fields to convey additional information that can be interpreted at edge nodes by modifying edge node interpretation of multicast data. Specifically, the value of the I-SID in the BMAC-DA field can be set to be different from the I-SID value in the I-TAG field. Carrying the L2 VSN I-SID value in the I-TAG allows the Egress BEBs to determine which VLAN/L2 VSN/Bridging-Domain of the IIF is in use, and then modify or preserve underlying header information accordingly.
摘要:
A mirroring configuration employs an alternate usage of an existing messaging protocol and mechanism for propagating mirroring control for remote mirroring of data streams. A source routing entity, i.e. a router or switch through which the mirrored stream passes, identifies the stream as available for monitoring. The enabled stream propagates from a source network device, typically from a router port, to a mirroring destination in addition to the addressed destination. A stream identifier emulates an identifier from an alternate usage, such as a multicast group identifier for a multicast protocol, and activates mirroring by inserting the stream identifier in publish and join messages of the multicast protocol.
摘要:
A network management and monitoring application employs diagnostic messages for confirming network path connectivity and identifying and locating connectivity faults. Diagnostic messages similar to conventional “ping” and “traceroute” messages traverse the network along a prescribed path for which diagnostic feedback is desired. The application receives and analyzes return messages sent from network entities along the path to ascertain connectivity issues on the path. The application receives layer 3 identifiers such as IP addresses, however performs diagnostic operations such as continuity checks based on layer 2 identifiers such as MAC (Media Access Control) identifiers because certain network entities operate on L2 identifiers and would otherwise evade a continuity check based on layer 3 identifiers. The monitoring application therefore performs continuity diagnostics such as ping and traceroute operations using L2 identifiers, therefore pinpointing problems with an L2 network forwarding entity such as a bridge that lies between L3 entities such as routers.
摘要:
Techniques disclosed herein include systems and methods for improving efficiency of multicast state generation within Shortest Path Bridging (SPB) networks. Techniques include using an IS-IS TLV structure with new multicast state computation rules for SPB Networks. SPB Networks use a TLV field for the I-SID Address (and equivalent TLV fields defined in different IETF/IEEE drafts) and node nicknames to signal information that is used to compute a multicast state required to provide L2 Services over a given SPB Network. The I-SID Address TLV is set or filled to carry various items of information. These items of information can include Backbone Media Access Control (B-MAC), Virtual Local Area Network Identifier (VID), I-SID[Transmit, Receive Bit], etc.
摘要:
An OAM link trace message is sent from a source node to a target node in a link state protocol controlled Ethernet network. The link trace message uses an 802.1ag format except, as a destination address, it uses either the unicast Ethernet MAC node ID of the target node or the multicast destination address of the service instance. Network topology verification in a link state protocol controlled Ethernet network checks the link state protocol database at a node to ascertain the control plane topology view of at least part of the network. One or more Ethernet OAM commands from the node are executed to ascertain the data plane topology view of the same part of the network. The control plane topology view of the network is compared to the data plane topology view of the network to see if they match. An error is flagged if they do not match.
摘要:
A Shortest Path Bridging (SPB) network provides a multicast traceroute using network identifiers such as IP addresses for the source and destination (multicast group). The network identifiers, which are based on layer 3 (IP) designations of the traced multicast group, are mapped to a network identifier of the multicast group (corresponding to a layer 2, or MAC address) and an associated Virtual Local Area Network (VLAN) which is used to transport the packets belonging to the multicast flow. Therefore, an operator issuing the traceroute command need not be familiar with the layer 2 concepts of the network, but rather need only supply the layer 3 (IP address) designations of the concerned entities.15