摘要:
An improved Built-In-Self-Test (BIST) architecture for Content Addressable Memory (CAM) devices, comprising a bit scanner for reading out the contents of the matchlines of the CAM cells as a serial bit stream; a bit transition detector that detects and determines the address of each bit transition in the serial bit stream; a state machine that generates bit addresses for each expected transition in the serial bit stream; and an analyser that compares expected transition bit addresses with detected transition addresses and declares a BIST failure if expected and detected transition addresses do not match at any point in the bit stream.
摘要:
The present invention provides a method for the simultaneous removal of an oxygen and/or nitrogen-containing dielectric antireflective coating (“DARC”) during plasma etching of an underlying layer in a film stack. According to the method of the invention, the film stack is etched using a plasma containing reactive fluorine species. The concentration of reactive fluorine species within the plasma is controlled based on one or more of the following factors: the oxygen content of the antireflective coating, the nitrogen content of the antireflective coating, the thickness of the antireflection coating layer, and the thickness of the underlying film stack layer. The disclosure of the invention provides preferred combinations of plasma source gases which provide for the simultaneous removal of an oxygen and/or nitrogen-containing DARC layer during etching of an underlying etch stack layer, where the underlying stack layer comprises a metal silicide, polysilicon, or a metal. Also provided herein is a formula for determining the total amount of DARC removed using a given etch process recipe, based on the etch selectivity of the particular process recipe
摘要:
A method for processing a substrate disposed in a substrate processing chamber to modify the contour of a trench formed on the substrate. The substrate processing chamber is the type that has a coil and a plasma generation system including a source power system operatively coupled to the coil and a bias power system operatively coupled to the substrate process chamber. The method includes transferring the substrate into the substrate process chamber. Thereafter, the substrate is exposed to a plasma formed from a first process gas consisting essentially of a sputtering agent by applying RF energy from the source power system to the coil. The plasma is biased toward the substrate by applying bias power to the substrate process chamber. Thereafter, the substrate is exposed to a plasma formed from a second process gas without applying bias power or applying minimal bias power to the substrate process chamber.