Abstract:
A system for operating a robotic arm comprises a carriage and a robotic arm. The carriage is mounted on a track adjacent to a rotary milking platform having a substantially circular perimeter and a stall for a dairy livestock. The carriage moves along a substantially straight portion of the track tangent to and outside the perimeter of the rotary milking platform at a rate based at least in part upon a speed of rotation of the rotary milking platform. The carriage moves in a direction corresponding to the direction of rotation of the rotary milking platform and such movement of the carriage is independent of any physical coupling between the carriage and the rotary milking platform. The robotic arm extends between the legs of the dairy livestock.
Abstract:
A method of operating a robotic attacher, includes suspending a robotic attacher from a rail and extending the robotic attacher between the legs of a dairy livestock. The method continues by attaching milking equipment to the dairy livestock using a gripping portion of the robotic attacher during a milking operation, wherein the gripping portion has a nozzle that is positioned away from a teat of the dairy livestock during the milking operation. The method concludes by rotating the gripping portion of the robotic attacher so that the nozzle is positioned to face a teat of the dairy livestock during a spraying operation.
Abstract:
A system for operating a robotic arm, comprises a controller and a robotic arm. The controller receives an indication that a stall of a rotary milking platform in which a dairy livestock is located has moved into an area adjacent a robotic arm that is detached from the rotary milking platform. The controller also determines whether a milking cluster is attached to the dairy livestock. The robotic arm is communicatively coupled to the controller and extends between the legs of the dairy livestock if the controller determines that the milking cluster is not attached to the dairy livestock. The robotic arm does not extend between the legs of the dairy livestock if the controller determines that the milking cluster is attached to the dairy livestock.
Abstract:
A system for operating a robotic arm comprises a carriage and a robotic arm. The carriage is mounted on a track adjacent to a rotary milking platform having a substantially circular perimeter and a stall for a dairy livestock. The carriage moves along a substantially straight portion of the track tangent to and outside the perimeter of the rotary milking platform at a rate based at least in part upon a speed of rotation of the rotary milking platform. The carriage moves in a direction corresponding to the direction of rotation of the rotary milking platform and such movement of the carriage is independent of any physical coupling between the carriage and the rotary milking platform. The robotic arm extends between the legs of the dairy livestock, and remains extended between the legs of the dairy livestock as the stall rotates adjacent to the robotic arm.
Abstract:
A system includes a milking box stall of a size sufficient to accommodate a dairy livestock. The milking box stall comprises a front wall, a rear wall, a first side wall and a second side wall. The system further includes an equipment portion located adjacent to the rear wall. The equipment portion comprises a separation container for use with only the milking box stall and that is operable to receive milk from the dairy livestock to be discarded if it is determined to be bad milk. The equipment portion further comprises a receiver jar for use with only the milking box stall and that is operable to receive milk from the dairy livestock if it is determined to be good milk.
Abstract:
A system includes a milking box and a robotic attacher. The milking box has a stall to accommodate a dairy livestock. The robotic attacher extends under the dairy livestock and comprises a nozzle. The robotic attacher is operable to rotate such that, during a first operation, the nozzle is positioned generally on the bottom of the robotic attacher, and during a second operation, the nozzle is positioned generally on the top of the robotic attacher.
Abstract:
A method, comprises receiving a flow of milk at an inlet of a manifold. The inlet comprises a first end coupled to a hose that receives a flow of milk from a teat cup and a second end terminating in a chamber of the manifold. The manifold comprises one or more other inlets and a plurality of outlets. The plurality of outlets includes one or more milk collector outlets and one or more drain outlets. The method proceeds by causing the flow of milk to be directed to a corresponding milk collector outlet by causing a shut-off valve corresponding to the inlet to open, and by causing a drain valve corresponding to the inlet to close. The method concludes by causing the flow of milk to be directed to a corresponding drain outlet by causing the shut-off valve corresponding to the inlet to close, and by causing the drain valve corresponding to the inlet to open.
Abstract:
A system includes a front wall, a rear wall opposite the front wall, and first and second side walls extending between the front wall and the rear wall. The first side wall includes a gate, and the second side wall is spaced apart from the first side wall such that the front wall, the rear wall, the first side wall, and the second side wall define a milking box stall that accommodates a dairy livestock. The system includes an equipment portion adjacent to the rear wall. It houses a separation container that receives milk to be discarded from the dairy livestock. The equipment portion further houses a robotic attacher that extends from behind and between the rear legs of a dairy livestock located within the milking box stall in order to attach milking equipment to the dairy livestock.
Abstract:
A robotic attacher comprises a main arm, a supplemental arm coupled to the main arm, and a gripping portion coupled to the supplemental arm. The gripping portion is operable to rotate such that at a first time, a nozzle is positioned generally on the bottom of the gripping portion, and at a second time, the nozzle is positioned generally on the top of the gripping portion.
Abstract:
A method for applying disinfectant to the teats of a dairy livestock comprises moving a robotic arm along a track in relation to a rotary milking platform housing a dairy livestock and independent of any physical coupling between the robotic arm and the rotary milking platform. The rotary milking platform has a substantially circular perimeter. The track is positioned outside the perimeter of the rotary milking platform. At least a portion of the track is straight and offset in relation to the rotary milking platform. The robotic arm comprises an arm member operable to pivot about an axis that is parallel to the track, and a spray tool attached to one end of the arm member. The method further comprises extending the robotic arm between the hind legs of the dairy livestock while the rotary milking platform rotates such that the spray tool is located at a spray position from which it may discharge disinfectant to the teats of the dairy livestock.