摘要:
A combustor swirl cup includes coaxial inner and outer swirlers separated by a tubular centerbody. The centerbody includes a bypass inlet surrounding the inner swirler and diverges aft along a perforate inner nozzle to terminate at an annular flameholder. An impingement ring is spaced forward from the flameholder in flow communication with the bypass inlet for receiving cooling air therefrom to impingement cool the flameholder.
摘要:
A method for operating a combustion system is provided. The method includes coupling the main swirler to the pilot swirler such that the main swirler substantially circumscribes the pilot swirler, supplying fuel to a first fuel circuit defined in the main swirler, and inducing swirling to the supplied fuel via a first set of swirler vanes positioned within the main swirler. The method also includes supplying fuel to a second fuel circuit defined in the main swirler, inducing swirling to the supplied fuel via a second set of swirler vanes positioned within the main swirler, each of the second set of swirler vanes comprising at least one second fuel passage defined therein, and coupling a shroud in flow communication to at least one of the first set of swirler vanes and the second set of swirler vanes, the shroud comprising at least one third fuel passage defined therein.
摘要:
A method of operating a gas turbine engine is provided. The method includes discharging pilot fuel into a combustion chamber from a nozzle through at least one pilot fuel outlet defined in a tip of the nozzle, discharging steam from the nozzle through a plurality of steam outlets that are spaced circumferentially about the plurality of pilot fuel outlets, and discharging primary fuel from the nozzle through a plurality of primary fuel outlets that are circumferentially aligned with the plurality of steam outlets. To facilitate mixing the primary fuel with the steam, the primary fuel is discharged from the nozzle tip at an oblique angle with respect to a centerline extending through the nozzle tip.
摘要:
Disclosed here are integrated methods and systems for producing fuel from biomass. The methods and systems pertain to gasifying a feed derived from biomass fermentate separation residue, such as corn-based distiller's grains, and producing a liquid transportation fuel component, such as aviation turbine fuel, from the gasified feed in a hydrocarbon synthesis reactor. At least a portion of the waste heat from the hydrocarbon synthesis reactor is supplied to a thermal process for liquefying, fermenting or distilling a biomass, or to a thermal process for separating or treating a biomass fermentate separation residue.
摘要:
A method of operating a gas turbine engine is provided. The method includes discharging pilot fuel into a combustion chamber from a nozzle through at least one pilot fuel outlet defined in a tip of the nozzle, discharging steam from the nozzle through a plurality of steam outlets that are spaced circumferentially about the plurality of pilot fuel outlets, and discharging primary fuel from the nozzle through a plurality of primary fuel outlets that are circumferentially aligned with the plurality of steam outlets. To facilitate mixing the primary fuel with the steam, the primary fuel is discharged from the nozzle tip at an oblique angle with respect to a centerline extending through the nozzle tip.
摘要:
A method for operating a gas turbine engine includes channeling compressed airflow discharged from a first compressor through an intercooler having a cooling medium flowing therethrough, channeling a working fluid through the intercooler to facilitate increasing an operating temperature of the working fluid, and channeling the discharged working fluid to a combustor to facilitate increasing an operating efficiency of the gas turbine engine.
摘要:
A method for operating a gas turbine engine facilitates reducing an amount of emissions from a combustor. The combustor includes a mixer assembly including a pilot mixer, a main mixer, and an annular centerbody extending therebetween. The method comprises injecting at least one of fuel and airflow into the combustor through at least one swirler positioned within the pilot mixer, and injecting fuel into the combustor through at least one swirler positioned within the main mixer, such that the fuel is directed into a combustion chamber downstream from the main mixer.
摘要:
A method for operating a gas turbine engine facilitates reducing an amount of emissions from a combustor. The combustor includes a mixer assembly including a pilot mixer, a main mixer, and an annular centerbody extending therebetween. The method comprises injecting at least one of fuel and airflow into the combustor through at least one swirler positioned within the pilot mixer, and injecting fuel into the combustor through at least one swirler positioned within the main mixer, such that the fuel is directed into a combustion chamber downstream from the main mixer.
摘要:
Aspects of the disclosure generally provide a heat engine system and a method for regulating a pressure and an amount of a working fluid in a working fluid circuit during a thermodynamic cycle. A mass management system may be employed to regulate the working fluid circulating throughout the working fluid circuit. The mass management systems may have a mass control tank fluidly coupled to the working fluid circuit at one or more strategically-located tie-in points. A heat exchanger coil may be used in conjunction with the mass control tank to regulate the temperature of the fluid within the mass control tank, and thereby determine whether working fluid is either extracted from or injected into the working fluid circuit. Regulating the pressure and amount of working fluid in the working fluid circuit selectively increases or decreases the suction pressure of the pump to increase system efficiency.
摘要:
The present invention generally relates to a system that enables one to both: (i) address various thermal management issues (e.g., inlet air cooling) in gas turbines, gas turbine engines, industrial process equipment and/or internal combustion engines; and (ii) yield a supercritical fluid-based heat engine. In one embodiment, the present invention utilizes at least one working fluid selected from ammonia, carbon dioxide, nitrogen, or other suitable working fluid medium. In another embodiment, the present invention utilizes carbon dioxide or ammonia as a working fluid to achieve a system that enables one to address inlet cooling issues in a gas turbine, internal combustion engine or other industrial application while also yielding a supercritical fluid based heat engine as a second cycle using the waste heat from the gas turbine and/or internal combustion engine to create a combined power cycle.