摘要:
A method, pump and Raman amplifier control an amount of stimulated Brillouin scattering (SBS) produced by the Raman amplifier pump so as to regulate a power penalty experienced by a receiver due to the SBS. A multi-mode semiconductor laser produces a multi-mode pump light having a dominate mode at a predetermined wavelength. At least a portion of the multi-mode pump light is coupled to a Raman gain medium in a forward pumping direction. A reflection sensor monitors reflected light that is at least partially reflected from said Raman gain medium. The reflection sensor has a passband characteristic that passes optical power of a dominate SBS peak of said reflected light, but suppresses other SBS peaks that are offset in wavelength from said dominate SBS peak. The optical power of the dominate SBS peak is compared to an optical power of the multi-mode pump light, and it is determined whether a result of the comparing step is above a predetermined threshold.
摘要:
First pump light for Raman-amplifying optical signal is inputted to the output end of the optical signal, and second pump light used for Raman-amplifying the first pump light and having a wavelength shorter than that of the first pump light is inputted to the input end of the optical signal. The second pump light is also inputted to the output end of the optical signal. The first pump light is also inputted to the input end of the optical signal. The Raman amplification band of the second pump light is made not to be overlapped with that of the optical signal. The wavelength of the second pump light is shorter than that of the first pump light by the Raman shift of the amplifier fiber. The light source of either the first or second pump light or both the light sources of them are multiplex optical sources. The first pump light is emitted from a semiconductor laser. Third pump light for Raman-amplifying the second pump light is directed to an optical transmission line. The optical signal is transmitted through a transmission line using the Raman amplification method.
摘要:
In a Raman amplifier using three or more pumping wavelengths, when the pumping wavelengths are divided into a short wavelength side group and a long wavelength side group at the boundary of the pumping wavelength having the longest interval between the adjacent wavelengths, the short wavelength side group includes two or more pumping wavelengths having intervals therebetween which are substantially equidistant, and the long wavelength side group is constituted by two or less pumping wavelengths. When a certain pumping wavelength is defined as a first channel and pumping wavelengths which are spaced apart from each other by about 1 THz from the certain pumping wavelength toward a long wavelength side are defined as second to n-th channels, respectively, pump lights having wavelengths corresponding to the first to n-th channels are multiplexed, and pump light having a wavelength spaced apart from the n-th channel by 2 THz or more toward the long wavelength side is further multiplexed with the said multiplexed pump light, and resultant pump light is used as pump source. Pump lights of all of the wavelengths corresponding to the channels other than (n−1)th and (n−2)th channels are multiplexed with each other, and resultant pump light is used as pump source. Pump lights of all of the wavelengths corresponding to the channels other than (n−2)th and (n−3)th channels are multiplexed with each other, and resultant pump light is used as pump source.
摘要:
A Raman amplifier according to the present invention comprises a plurality of pumping means using semiconductor lasers of Fabry-Perot, DFB, or DBR type or MOPAs, and pumping lights outputted from the pumping means have different central wavelengths, and interval between the adjacent central wavelength is greater than 6 nm and smaller than 35 nm. An optical repeater according to the present invention comprises the above-mentioned Raman amplifier and adapted to compensate loss in an optical fiber transmission line by the Raman amplifier. In a Raman amplification method according to the present invention, the shorter the central wavelength of the pumping light the higher light power of said pumping light. In the Raman amplifier according to the present invention, when a certain pumping wavelength is defined as a first channel, and second to n-th channels are defined to be arranged with an interval of about 1 THz toward a longer wavelength side, the pumping lights having wavelengths corresponding to the first to n-th channels are multiplexed, and an pumping light having a wavelength spaced apart from the n-th channel by 2 THz or more toward the longer wavelength side is combined with the multiplexed light, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n-1)-th and (n-2)-th channels may be multiplexed, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n-2)-th and (n-3)-th channels may be multiplexed, thereby forming the pumping light source.
摘要:
A Raman amplifier according to the present invention comprises a plurality of pumping means using semiconductor lasers of Fabry-Perot, DFB, or DBR type or MOPAs, and pumping lights outputted from the pumping means have different central wavelengths, and interval between the adjacent central wavelength is greater than 6 nm and smaller than 35 nm. An optical repeater according to the present invention comprises the above-mentioned Raman amplifier and adapted to compensate loss in an optical fiber transmission line by the Raman amplifier. In a Raman amplification method according to the present invention, the shorter the central wavelength of the pumping light the higher light power of said pumping light. In the Raman amplifier according to the present invention, when a certain pumping wavelength is defined as a first channel, and second to n-th channels are defined to be arranged with an interval of about 1 THz toward a longer wavelength side, the pumping lights having wavelengths corresponding to the first to n-th channels are multiplexed, and a pumping light having a wavelength spaced apart from the n-th channel by 2 THz or more toward the longer wavelength side is combined with the multiplexed light, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n−1)-th and (n−2)-th channels may be multiplexed, thereby forming the pumping light source. The pumping lights have wavelengths corresponding to the channels than (n−2)-th and (n−3)-th channels may be multiplexed, thereby forming the pumping light source.
摘要:
A Raman amplifier according to the present invention comprises a plurality of pumping means using semiconductor lasers of Fabry-Perot, DFB, or DBR type or MOPAs, and pumping lights outputted from the pumping means have different central wavelengths, and interval between the adjacent central wavelength is greater than 6 nm and smaller than 35 nm. An optical repeater according to the present invention comprises the above-mentioned Raman amplifier and adapted to compensate loss in an optical fiber transmission line by the Raman amplifier. In a Raman amplification method according to the present invention, the shorter the central wavelength of the pumping light the higher light power of said pumping light. In the Raman amplifier according to the present invention, when a certain pumping wavelength is defined as a first channel, and second to n-th channels are defined to be arranged with an interval of about 1 THz toward a longer wavelength side, the pumping lights having wavelengths corresponding to the first to n-th channels are multiplexed, and an pumping light having a wavelength spaced apart from the n-th channel by 2 THz or more toward the longer wavelength side is combined with the multiplexed light, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n-1)-th and (n-2)-th channels may be multiplexed, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n-2)-th and (n-3)-th channels may be multiplexed, thereby forming the pumping light source.
摘要:
An optical transmission fiber is formed to include a relatively low-index, relatively thin outer cladding layer disposed underneath the protective polymer outer coating. Stray light propagating along an inner cladding layer(s) within the fiber will be refracted into the thin outer cladding (by proper selection of refractive index values). The thin dimension of the outer cladding layer allows for the stray light to “leak” into the outer coating in a controlled, gradual manner so as to minimize heating of the coating associated with the presence of stray light. The inventive fiber may also be bent to assist in the movement of stray light into the coating.
摘要:
An optical transmission fiber is formed to include a relatively low-index, relatively thin outer cladding layer disposed underneath the protective polymer outer coating. Stray light propagating along an inner cladding layer(s) within the fiber will be refracted into the thin outer cladding (by proper selection of refractive index values). The thin dimension of the outer cladding layer allows for the stray light to “leak” into the outer coating in a controlled, gradual manner so as to minimize heating of the coating associated with the presence of stray light. The inventive fiber may also be bent to assist in the movement of stray light into the coating.
摘要:
An optical fiber for Raman amplification amplifies a signal light with a pumping light. A chromatic dispersion at a wavelength of 1,550 nm is in a range between −70 ps/nm/km and −30 ps/nm/km. Raman gain efficiency with a pumping light of 1,450 nm is equal to or more than 5 (W×km)−1. Nonlinear coefficient at the wavelength of 1,550 nm is equal to or less than 5.0×10−9 W−1. Zero-dispersion wavelength is neither at a wavelength of the signal light nor at a wavelength of the pumping light. Cut-off wavelength is equal to or less than the wavelength of the pumping light.
摘要:
In an optical amplifier having a plurality of rare earth doped optical fibers in a multi-stage, there are provided one or more optical variable attenuator means, and an attenuation amount control means for changing an optical attenuation amount of the optical variable attenuator means on the basis of temperature of the rare earth doped optical fibers or an environmental temperature. In an optical amplifier having a plurality of rare earth doped optical fibers in a multi-stage, between the rare earth doped optical fibers, there are provided a replaceable optical part, one or more optical variable attenuator means, and an attenuation amount control means for changing an optical attenuation amount of the optical variable attenuator means on the basis of temperature of the rare earth doped optical fibers or an environmental temperature. In an optical amplifier having a plurality of rare earth doped optical fibers in a multi-stage, one or more externally controllable optical variable attenuator means are provided, and an optical attenuation amount of the optical variable attenuator means is varied with intensity of input optical signal to the optical amplifier and intensity of output optical signal from the optical amplifier.