Abstract:
A liquid crystal display device includes a first panel including a first substrate and a first plurality of thin film elements formed thereon, a second panel including a second substrate and a second plurality of thin film elements formed thereon, and a liquid crystal layer disposed the lower panel and the upper panel. The first substrate and the second substrate each include alkali-containing glass.
Abstract:
A display apparatus according to an embodiment includes a first substrate including a plastic material, a second substrate facing the first substrate, and a coating layer formed on at least one surface of the first substrate. The coating layer includes a first compound having an acryl-based monomer and a second compound having a silicon derivative, and prevents reflection of light from the first substrate when light is provided to the first substrate. Thus, the display apparatus may have enhanced lightness (brightness) thereby improving the display quality.
Abstract:
A touch screen display device includes a common electrode, a base substrate disposed opposite to the common electrode, a display signal line formed on the base substrate, a plurality of pixel electrodes, a touch position sensing part formed between the base substrate and the pixel electrodes, the touch position sensing part sensing a change of electrostatic capacitance formed between the common electrode and the touch position sensing part, and a display layer disposed between the common electrode and the pixel electrodes. The display layer includes a plurality of micro capsules comprising positively charged pigment particles and negatively charged pigment particles.
Abstract:
An adhesive tape for a flexible display device and a method of manufacturing a flexible display device using the same are provided. The adhesion tape for a flexible display device includes a supporting film; a first adhesive layer formed on a first surface of the supporting film and having an uneven surface; and a second adhesive layer formed on a second surface of the supporting film. Accordingly, separation between the supporter and the flexible substrate may be prevented during the manufacturing process, even if the adhesive layers do not have strong adhesive ingredients. Therefore, the production yield of a flexible display device may be improved and the manufacturing process simplified.
Abstract:
A display apparatus includes a first substrate, a second substrate, and a blocking layer disposed on the first substrate adjacent to an outer edge of the first substrate. The second substrate includes first and second areas. The first area faces the first substrate. The outer edge of the first substrate is aligned with a boundary between the first area and the second area of the second substrate.
Abstract:
A touch screen display device includes a common electrode, a base substrate disposed opposite to the common electrode, a display signal line formed on the base substrate, a plurality of pixel electrodes, a touch position sensing part formed between the base substrate and the pixel electrodes, the touch position sensing part sensing a change of electrostatic capacitance formed between the common electrode and the touch position sensing part, and a display layer disposed between the common electrode and the pixel electrodes. The display layer includes a plurality of micro capsules comprising positively charged pigment particles and negatively charged pigment particles.
Abstract:
A flexible substrate, a method of manufacturing a display substrate, and a method of manufacturing a display panel. A spinning device is filled with a source solution, and a carrier substrate is arranged such that the spinning device faces the carrier substrate. An electric field is formed between the spinning device and the carrier substrate by supplying a power to the spinning device and the carrier substrate, and a nano-fiber is formed by spraying the source solution toward the carrier substrate. A flexible substrate is formed on the carrier substrate by coating a polymer resin on the nano-fiber, a plurality of display cells are formed on the flexible substrate, and then a display substrate is formed by separating the carrier substrate from the flexible substrate.
Abstract:
In a substrate for a display apparatus, the substrate includes a base substrate and a shielding layer formed on a surface of the base substrate. The shielding layer has an energy bandgap corresponding to a reference wavelength of external light. Thus, the shielding layer blocks light having wavelength equal to or less than the reference wavelength, so that a wavelength band of light may be adjusted.
Abstract:
A method of fabricating a flexible display device, the method including applying an adhesive layer including polyimide on a carrier substrate, laminating a flexible substrate on the adhesive layer, and separating the carrier substrate from the flexible substrate by irradiating a laser beam or light onto the adhesive layer.
Abstract:
A method of manufacturing a thin film transistor array panel is provided, the method including: forming a gate line on a substrate; forming a gate insulating layer on the gate line; forming a data line and a drain electrode on the gate insulating layer; forming an organic semiconductor layer on the data line, the drain electrode and an exposed portion of the gate insulating layer between the data line and the drain electrode; forming a protective member fully covering the organic semiconductor layer; forming a passivation layer on the protective layer, the data line, and the drain electrode; forming a contact hole in the passivation layer to expose a portion of the drain electrode; and forming a pixel electrode on the passivation layer, the pixel electrode connected to the drain electrode through the contact hole.