Abstract:
Disclosed are methods and systems for monitoring and reporting road violations of vehicles sharing roads with responding emergency vehicles. According to an exemplary method video is captured from a forward and/or rear facing camera mounted to an emergency vehicle, and the video is processed to identify any vehicles in violation within a prescribed distance from the emergency vehicle. A license plate id of a vehicle determined to be in violation is identified and communicated to the appropriate authorities.
Abstract:
Methods and systems for exploiting color for object recognition. A color gradient for each pixel in a gradient image of an object can be calculated. The gradient image can be binarized to produce an image having white walls around characters and other structures. A connected component analysis operation can be performed with respect to black regions in the image to determine bounding boxes for characters and other pictorial elements in the image and thereafter identify character candidates from the image utilizing character metrics. Non-character colors can then be eliminated from the image utilizing an outlier rejection.
Abstract:
Systems and methods for automating an image rejection process. Features including texture, spatial structure, and image quality characteristics can be extracted from one or more images to train a classifier. Features can be calculated with respect to a test image for submission of the features to the classifier, given an operating point corresponding to a desired false positive rate. One or more inputs can be generated from the classifier as a confidence value corresponding to a likelihood of, for example: a license plate being absent in the image, the license plate being unreadable, or the license plate being obstructed. The confidence value can be compared against a threshold to determine if the image(s) should be removed from a human review pipeline, thereby reducing images requiring human review.
Abstract:
Methods and systems for tag recognition in captured images. A candidate region can be localized from regions of interest with respect to a tag and a tag number shown in the regions of interest within a side image of a vehicle. A number of confidence levels can then be calculated with respect to each digit recognized as a result of an optical character recognition operation performed with respect to the tag number. Optimal candidates within the candidate region can be determined for the tag number based on individual character confidence levels among the confidence levels. Optimal candidates from a pool of valid tag numbers can then be validated using prior appearance probabilities and data returned, which is indicative of the most probable tag to be detected to improve image recognition accuracy.
Abstract:
Methods and systems for localizing numbers and characters in captured images. A side image of a vehicle captured by one or more cameras can be preprocessed to determine a region of interest. A confidence value of series of windows within regions of interest of different sizes and aspect ratios containing a structure of interest can be calculated. Highest confidence candidate regions can then be identified with respect to the regions of interest and at least one region adjacent to the highest confidence candidate regions. An OCR operation can then be performed in the adjacent region. An identifier can then be returned from the adjacent region in order to localize numbers and characters in the side image of the vehicle.
Abstract:
Methods and systems for character segmentation in an automatic license plate recognition application. One or more images of a license plate are acquired. Then, a pixel-level importance may be calculated with respect to the image(s) of the license plate based on information within the image, such as gradient information and raw grayscale information. A seam selection can be then applied with respect to the pixel-level importance map and the image(s) by enforcing constraints based on known characteristics of license plates in order to provide for character segmentation with respect to the image(s) of the license plate.
Abstract:
Methods, systems and processor-readable media for adaptive character segmentation in an automatic license plate recognition application. A region of interest can be identified in an image of a license plate acquired via an automatic license plate recognition engine. Characters in the image with respect to the region of interest can be segmented using a histogram projection associated with particular segmentation threshold parameters. The characters in the image can be iteratively validated if a minimum number of valid characters is determined based on the histogram projection and the particular segmentation threshold parameters to produce character images sufficient to identify the license plate.
Abstract:
Methods, systems and processor-readable media for determining, post training, which locations of a classifier window are most significant in discriminating between class and non-class objects. The important locations can be determined by calculating the mean and standard deviation of every pixel location in the classifier context for both the positive and negative samples of the classifier. Using a combination of t-scores and mean differences, the importance of all pixel locations in the classifier score can be rank ordered. A sufficient number of pixel locations can then be selected to achieve a detection rate close enough to the full classifier for a particular application.
Abstract:
Methods, systems and processor-readable media for providing a license plate overlay decal with an infrared readable annotation mark for an optical character recognition and segmentation. The annotation mark with respect to character image of a license plate can be designed by training an ALPR engine to improve automatic license plate recognition performance. A plate overlay decal can be rendered with the annotation mark and attached to a license plate. The annotation mark can also be directly placed on the license plate when the license plate is rendered. The annotation mark is visible when illuminated by an infrared light and the license plate appears normal in visible light. The annotation mark enables an ALPR imaging system to obtain more information for each character and utilize the information to improve conclusion accuracy.
Abstract:
Images with respect to an object at an ordering, payment, and delivery locations can be captured utilizing an image capturing system. Capture can be after detecting the presence of the object at each location utilizing an object presence sensor. The captured image can be processed to associate it with a signature and can also be processed in order to extract a small region of interest (e.g., license plate) and can be reduced to a unique signature. Signature can be stored into a database together with the corresponding order and images. Signatures can be matched. The order associated with the object matched by the system together with at least one of the images captured at the delivery point and the order point can be displayed at a user interface located at the payment/delivery point to ensure that the right order is delivered to the right customer asscoiated with the object.