摘要:
Signal impairment correlations for multiple signals in a received multipath signal are constructed by fitting parametric models associated with each high-data-rate signal in the multipath against measured impairment correlations. The estimated model fitting parameters are applied to form impairment correlation estimates for all signals. The models comprise a separate impairment covariance matrix scaled by a model fitting parameter for each high-data-rate signal and a noise covariance matrix scaled by a noise element model fitting parameter. The model fitting parameters may be estimated by a least-squares formulation and applied to form impairment correlation estimates for all signals of interest. The resulting impairment correlation estimates may be provided to G-RAKE receivers or joint scaling demodulators to demodulate the signals while suppressing interference from the high-data-rate signals.
摘要:
Exemplary combining weight generation is based on estimating received signal impairment correlations using a weighted summation of interference impairment terms, such as an interference correlation matrix associated with a transmitting base station, and a noise impairment term, such as a noise correlation matrix, the impairment terms scaled by fitting parameters. The estimate is updated based on adapting the fitting parameters responsive to measured signal impairment correlations. The interference matrices are calculated from channel estimates and delay information, and knowledge of the receive filter pulse shape. Instantaneous values of the fitting parameters are determined by fitting the impairment correlation terms to impairment correlations measured at successive time instants and the fitting parameters are adapted at each time instant by updating the fitting parameters based on the instantaneous values.
摘要:
A wireless communication device or system generates transmit power control feedback for a received power control channel by determining a command error rate (CER), or by identifying a target signal quality for the power control channel according to a defined signal-quality-to-CER mapping function. Generally, the power control channel does not include error-coded data to use for CER estimation. However, in one embodiment, the channel does include known reference bits that are evaluated for CER estimation, with the estimated CER used to set the signal quality target for inner loop power control. In other embodiments, a computed reception error probability is used to identify a CER estimate according to a defined probability-to-CER mapping function. By way of non-limiting example, these embodiments may be used to provide power control feedback for power control commands transmitted on a Fractional Dedicated Physical Channel in WCDMA systems.
摘要:
Teachings presented herein offer reduced computational complexity for detecting a plurality of symbol blocks, even for symbol blocks that comprise the combination of a relatively large number of symbols. The teachings perform two or more stages of detection assistance to successively reduce the number of candidate combinations of symbols to be considered for a symbol block when detecting the plurality of symbol blocks. In particular, the teachings identify a reduced set of candidate symbol combinations for at least one symbol block in the plurality of symbol blocks, and then jointly detect each of one or more distinct groups of symbols in the symbol block to determine from that reduced set a final reduced set of candidate symbol combinations. Detection of the plurality of symbol blocks limits the candidate combinations of symbols considered for a symbol block to the final reduced set of candidate symbol combinations identified for that symbol block.
摘要:
Detecting a symbol of interest comprises despreading a received signal to obtain despread values corresponding to the symbol of interest and to one or more interfering symbols, combining the despread values to generate combined values for the symbol of interest and the interfering symbols, computing spreading waveform correlations between the spreading waveform for the symbol of interest and the spreading waveforms for the interfering symbols, computing interference rejection terms representing the interference present in the combined value for the symbol of interest attributable to the interfering symbols based on the spreading waveform correlations, and generating an estimate of the symbol of interest by combining the combined values with the interference rejection terms. The interference rejection terms are computed by scaling the spreading waveform correlations by corresponding signal powers and compensating the estimates for noise. This provides a robust interference model that avoids numerical problems associated with conventional joint detection.
摘要:
A parametric form of G-Rake and chip equalization for closed-loop transmit diversity is provided, that accounts for impairment correlation between transmit antennas. In a closed-loop transmit diversity system, the base station transmits a signal from two or more antennas, using one of a predetermined set of relative phase offsets at one of the antennas. The parametric estimation of the impairment or data covariance is performed by summing terms, including a term for each possible phase offset. The terms are weighted by fitting parameters. The fitting parameters are jointly solved by fitting the impairment or data covariance estimate to a measured impairment or data covariance. In another aspect, a measured impairment covariance is formed by exploiting a special relationship between the pilot channels of the different transmit antennas.
摘要:
The computational complexity required for interference suppression in the reception of wireless communications from multiple users is reduced by sharing information among the users. In some situations, information indicative of a statistical characteristic of the interference is shared among the users. Delays used to produce the interference statistic information are determined based on rake finger delays employed by the users. In some situations, a parameter estimate that is used to calculate combining weights for the users is shared among the users.
摘要:
A receiver circuit suppresses effects of “benign” impairment from the calculation of received signal quality estimates, such that the estimate depends primarily on the effects of non-benign impairment. For example, a received signal may be subject to same-cell and other-cell interference plus noise, which is generally modeled using a Gaussian distribution, and also may be due to certain forms of self-interference, such as quadrature phase interference arising from imperfect derotation of the pilot samples used to generate channel estimates for the received signal. Such interference generally takes on a distribution defined by the pilot signal modulation, e.g., a binomial distribution for binary phase shift keying modulation. Interference arising from such sources is relatively “benign” as compared to Gaussian interference and thus should be suppressed or otherwise discounted in signal quality calculations. Suppression may be based on subtracting benign impairment correlation estimates from total impairment correlation estimates, or on filtering the benign impairment in channel estimation.
摘要:
A pilot channel signal for time-division multiplexing with one or more traffic channel signals in a broadcast/multi-cast signal and for code-division multiplexing with a continuously transmitted pilot channel signal is described. In an exemplary method for transmitting a broadcast/multicast signal, a pilot symbol sequence is obtained for each slot of one or more frames of the broadcast/multicast signal, so that the pilot symbol sequence varies for each slot of a given frame. The pilot symbol sequence for each slot is spread with a channelization code, and the spread pilot symbol sequence for each slot is scrambled, using a scrambling code, to form a first pilot channel signal. The first pilot channel signal is transmitted so that it is time-division multiplexed with one or more traffic channel signals transmitted during each slot and code-division multiplexed with a second pilot channel signal transmitted during all slots of the one or more frames.
摘要:
According to the teachings presented herein, “spreading code” knowledge is used in forming amplitude references for QAM demodulation in a DS-CDMA receiver. Here, “spreading code” broadly refers to spreading/channelization codes, scrambling codes, or the product of such codes. Further, these teachings apply to any linear DS-CDMA demodulator, such as Rake, Generalized Rake (G-Rake), or chip equalizer, and to nonlinear demodulators that employ linear filtering, such as decision feedback equalizers (DFEs). Advantageously, the determination of symbol-specific amplitude references relies on shared correlation estimates and/or shared combining weights that are common to two or more symbols of interest, thereby significantly reducing processing requirements as compared to the use of symbol-specific impairment correlation estimates.