摘要:
In an image capturing apparatus, a video input unit (2) captures the image of an object and sequentially acquires image data associated with the image capturing, a model data memory (6) stores model data associated with the first feature quantity calculated from a feature point of the object in a model image, a principal object detection unit (3) calculates the second feature quantity from a feature point of the object in the acquired image data, a state change estimation unit (4) estimates, on the basis of the second feature quantity and the model data, the timing when the object satisfies a predetermined condition, and an image input processing control unit (7) stores the image data corresponding to the estimated timing in an image recording unit (5). This configuration makes the image capturing apparatus acquire an image in a more proper state without large-capacity memory.
摘要:
A feature point detection unit (153) and feature amount extraction unit (154) extract a plurality of features of an object from input image data. When there are unextracted features of the plurality of features, a weight setting unit (155) sets weights for the extracted features. A facial expression determination unit (156) executes recognition processing of the object based on the features weighted by the weight setting unit (155).
摘要:
In an image capturing apparatus, a video input unit (2) captures the image of an object and sequentially acquires image data associated with the image capturing, a model data memory (6) stores model data associated with the first feature quantity calculated from a feature point of the object in a model image, a principal object detection unit (3) calculates the second feature quantity from a feature point of the object in the acquired image data, a state change estimation unit (4) estimates, on the basis of the second feature quantity and the model data, the timing when the object satisfies a predetermined condition, and an image input processing control unit (7) stores the image data corresponding to the estimated timing in an image recording unit (5). This configuration makes the image capturing apparatus acquire an image in a more proper state without large-capacity memory.
摘要:
A person area is detected from an inputted image, a category to which a person shown in the person area belongs is recognized, a correction area is extracted from the person area, and the correction area is corrected based on the recognized category. Thus, the inputted image is easily corrected in an appropriate manner according to the category of the person, that is, an object.
摘要:
An eye region is extracted from an input image. A poor pupil hue quality region is extracted from the eye region. A high brightness region is extracted from the poor pupil hue quality region. A region obtained by excluding the high brightness region from the poor pupil hue quality region is extracted as a red-eye region. The high brightness region is corrected by using a method different from that for the red-eye region.
摘要:
An image including a face is input (S201), a plurality of local features are detected from the input image, a region of a face in the image is specified using the plurality of detected local features (S202), and an expression of the face is determined on the basis of differences between the detection results of the local features in the region of the face and detection results which are calculated in advance as references for respective local features in the region of the face (S204).
摘要:
A movement evaluation apparatus extracts feature points from a first reference object image and an ideal object image which are obtained by sensing an image including an object by an image sensing unit, and generates ideal action data on the basis of change amounts of the feature points between the first reference object image and the ideal object image. The apparatus extracts feature points from a second reference object image and an evaluation object image sensed by the image sensing unit, and generates measurement action data on the basis of change amounts of the feature points between the second reference object image and the evaluation object image. The movement evaluation apparatus evaluates the movement of the object in the evaluation object image on the basis of the ideal action data and the measurement action data.
摘要:
In a pattern identification method in which input data is classified into predetermined classes by sequentially executing a combination of a plurality of classification processes, at least one of the classification processes includes a mapping step of mapping the input data in an N (N≧2) dimensional feature space as corresponding points, a determination step of determining whether or not to execute the next classification process based on the corresponding points, and selecting step of selecting a classification process to be executed next based on the corresponding points when it is determined in the determination step that the next classification process should be executed.
摘要:
An image-processing apparatus for executing accurate facial expression recognition even for a subject hard to recognize a facial expression is provided. A person's face region is extracted from an image input from an image input unit. A predetermined partial region that changes between when the facial expression is in the first and second states is extracted from the extracted face region. A facial expression evaluation value is calculated using an evaluation value calculation formula. When the calculated facial expression evaluation value exceeds a threshold value, it is determined that the facial expression is in the second state. If the difference between the maximum value and the minimum value of the calculated facial expression evaluation value within a predetermined time is smaller than a predetermined value, the evaluation value calculation formula or its parameter is changed to increase the difference.
摘要:
In a pattern identification method in which input data is classified into predetermined classes by sequentially executing a combination of a plurality of classification processes, at least one of the classification processes includes a mapping step of mapping the input data in an N (N≧2) dimensional feature space as corresponding points, a determination step of determining whether or not to execute the next classification process based on the corresponding points, and selecting step of selecting a classification process to be executed next based on the corresponding points when it is determined in the determination step that the next classification process should be executed.