Abstract:
Systems and methods for optimizing low frequency output of marine sources are described. The marine source arrangements and associated methods disclosed herein seek to fully frequency lock bubbles emitted by airguns in close proximity to one another. In this manner, larger effective bubble volumes can be achieved, thus increasing low frequency output.
Abstract:
Systems and methods for carrying out seismic surveys and/or conducting permanent reservoir monitoring with autonomous or remote-controlled water vehicles, including surface and submersible vehicles, are described. Additional methods carried out by autonomous or remote-controlled water vehicles and associated with seismic surveys further described.
Abstract:
A technique includes generating seismic sweep sequences. Each of the seismic sweep sequences has an associated sweep rate. The technique includes varying the sweep rates to reduce harmonic distortion present in a composite seismic measurement produced in response to the sweep sequences.
Abstract:
A technique for providing short circuit protection in electrical systems used in hydrocarbon exploration and production and, more particularly, for such electrical systems comprising serially connected nodes, includes an apparatus and method. The apparatus, includes a power supply and a plurality of electrically serially connected application sensors downstream from the power supply. Each application sensor includes a sensing element; and a plurality of electronics associated with the sensing element. The electronics shut off upstream power to the downstream application sensors in the presence of a short circuit. The method includes serially supplying power to a downhole apparatus comprising a plurality of electrically serially connected downhole sensors; sensing, in series and upon receiving power from upstream, at each downhole sensor whether a downstream short circuit exists; and shutting off upstream power to the downstream downhole sensors in the presence of a short circuit.
Abstract:
The technologies described herein include systems and methods for performing a first seismic survey and performing a second seismic survey after a predetermined amount of time has lapsed between the first seismic survey and the second seismic survey. The shot times and the shot positions of the second seismic survey may be substantially the same as the shot times and the shot positions of the first seismic survey. After performing the seismic surveys, seismic data generated by the first seismic survey may be processed to generate a first image, and seismic data generated by the second seismic survey may be processed to generate a second image. After generating the first and second images, a difference between the first image and the second image may be computed to generate a time lapse difference image.
Abstract:
A method of processing geophysical signals obtained by—monitoring the response of the earth to an source using a plurality of receivers is described including the evaluation of sums or integrals of functions of weighted signal values over a one or multidimensional domain such that the domain is split into a plurality of simplices and the signal values are interpolated across the simplices using a non-linear approximation of the function, the approximation including signals and gradients of the signals, and the evaluated sums or integrals are used to obtain a representation of characteristics of the earth.
Abstract:
A technique includes modeling interpolated seismic measurements as a random process characterized by seismic measurements acquired at a set of sensor locations and an interpolation error. The technique includes determining the interpolated seismic measurements based at least in part on a minimization of the interpolation error.
Abstract:
A technique includes receiving first seismic data acquired by one or more receivers in response to energy produced by one or more seismic sources interacting with a subsurface feature. The first seismic data is indicative of measured reflection coefficients for image points for the subsurface feature, the measured reflection coefficients are associated with incidence angles, and a range of the incidence angles varies with respect to an image point position. The technique includes processing the first seismic data in a machine to generate second data indicative of a normal incidence reflection coefficient for at least one of the image points not associated with a normal angle of incidence.
Abstract:
Translational data acquired by at least one seismic sensor is received. Gradient sensor data acquired by at least one gradient sensor is received. Estimated translational data at a position away from at least one position of the at least one seismic sensor is computed, where the computing is based on the gradient sensor data and the translational data.
Abstract:
The present invention relates to a method of processing data representing energy propagating through a medium (e.g., acoustic, elastic or electromagnetic energy) and describes an efficient and flexible approach to forward modeling and inversion of such energy for a given medium. The representation theorem for the wave-equation is used, in combination with time-reversal invariance and reciprocity, to express the Green's function between two points in the interior of the model as an integral over the response in those points due to sources regularly distributed on a surface surrounding the medium and the points.