Abstract:
The device for embossing and perforating foils for tobacco goods includes: a pair of embossing rolls, one of the embossing rolls having teeth for perforating the foil, the counter roll to the embossing roll with the perforating teeth being a matrix roll which has recesses that correspond to the teeth on the patrix roll, both embossing rolls being arranged in a perforation device, and the device being designed in order to be operated directly or indirectly online in a machine for producing tobacco goods. The use of patrix-matrix embossing rolls allows for a large variety of perforations, the device having a control unit designed to control the exact position, size and arrangement of the perforations on the basis of the quality of the foil to be processed.
Abstract:
Apparatus and method for checking the depth of a crease line in a material comprising a stamping device (4) having stamping portions (8) arranged at a plurality of levels with respect to a surface of said material, the arrangement being such that those portions (8) which contact the material mark the material with an indicator indicative of the depth of the crease line.
Abstract:
A device (1) for embossing a predetermined pattern onto at least one flat material (4) introduced between at least two printing rollers of said device, the movements of the embossing rollers being synchronized and said rollers (2, 3) also comprise at least two embossing tracks (5, 6), wherein the movements of the embossing rollers (2, 3) are synchronized with each other by synchronization means (7, 8) associated with different embossing tracks (5, 6), which mesh with each other and are distributed over the lateral surfaces of the embossing rollers (2, 3) or are electronically and/or electromechanically synchronized together, the different embossing tracks (5, 6) of the associated synchronization means (7, 8) of the same embossing roller (2, 3) being offset in relation to each other.
Abstract:
Method and apparatus for manufacturing a hygiene paper product includes: providing a continuous paper web, moving the continuous web in the direction of its longitudinal extension, applying a repetitive creative structure relative to the longitudinal extension of the web as a first pattern to the web with a first roll, applying a repetitive functional structure relative to the longitudinal extension of the web as a second pattern to the web with a second roll, while enabling the first pattern to be in register with the second pattern by concurrently controlling the repetitive surface speed of continuous web and the phasing between the first roll and the second roll.
Abstract:
A method of embossing an absorbent web with a machine direction undulatory structure is described. The web has a plurality of ridges extending in its machine direction occurring at a frequency, F, across the web and the method includes providing the web to an embossing station where the web is embossed between a first and second embossing roll, each of which rolls may be provided with a plurality of embossing elements configured to define a plurality of embossing nips. At least a portion of the embossing nips are substantially oriented in a cross-machine direction with respect to the web and have a cross direction length, L. The product F×L is from about 0.1 to about 5.
Abstract:
Method and apparatus for manufacturing a hygiene paper product includes: providing a continuous paper web, moving the continuous web in the direction of its longitudinal extension, applying a repetitive creative structure relative to the longitudinal extension of the web as a first pattern to the web with a first roll, applying a repetitive functional structure relative to the longitudinal extension of the web as a second pattern to the web with a second roll, while enabling the first pattern to be in register with the second pattern by concurrently controlling the repetitive surface speed of continuous web and the phasing between the first roll and the second roll.
Abstract:
An embossing system is provided for embossing a web having a first embossing roll having embossing elements and a second embossing roll having embossing elements, wherein at least a portion of the embossing elements of the first and second embossing rolls are substantially oriented in the cross-machine direction. The embossing roll may be crowned, may have alignment means, and may be provided with precision gearing.
Abstract:
A method and work material for making embossed blanks for sample packages and other free-standing three dimensional display items from a sheet-type work material includes a printer for printing a graphic image on the work material, and a processing mechanism for performing work operations on the work material. The sheet-type work material has a top layer of sheet material, an intermediate layer of sheet material, and a carrier layer of sheet material, with a first layer of adhesive material bonding the top and intermediate layers of sheet material together, and a second layer of adhesive material bonding the intermediate and carrier layers of sheet material together. Any, all, or a combination of the top, intermediate, or carrier layers of sheet material may have shape retaining deformability characteristics to aid in holding an embossed design in the work material. In operation, the printer prints an image onto the work material, which is then advanced to the processing mechanism where a creaser places indented fold lines into the work material, a knife cuts the blank from the work material, and an embosser, moving in either a rasterwise or vectorial motion, embosses a design into the work material. The blank can then be removed from the work material and erected into a package or other free-standing three dimensional display item.
Abstract:
An embossing system for embossing and perforating at least a portion of a web is provided comprising a first embossing roll having embossing elements and at least a second embossing roll having embossing elements, wherein the elements of the first and second embossing rolls define perforate nips for embossing and perforating the web and wherein at least a predominate number of the perforate nips are substantially oriented in the cross-machine direction. Moreover, substantially all of the nips defined by the embossing elements of the first and second embossing rolls can be substantially oriented in the cross-machine direction. Further, the cross-machine embossing elements are at an angle of about 85null to 95null from the machine direction.
Abstract:
A method for making embossed blanks for sample packages and other free-standing three dimensional display items from a sheet-type work material. The sheet-type work material has a top layer of sheet material, an intermediate layer of sheet material, and a carrier layer of sheet material. In operation, a printer prints an image onto the work material, which is then advanced to a processing mechanism where a creaser places indented fold lines into the work material, a knife cuts a blank from the work material, and an embosser embosses a design into the work material.