Abstract:
A carrier transmission device comprises a slide rail, a rack and a pair of gears. The slide rail extends along a transmission direction of a carrier to be transmitted and is adapted to slidingly guide the carrier. The rack extends along the transmission direction and is connectable to, or integrally formed on, the carrier. The pair of gears are spaced by a predetermined distance in the transmission direction and are adapted to engage with the rack and drive the carrier to move in the transmission direction on the slide rail.
Abstract:
A motor vehicle steering gear with a gear rack and a drive pinion that meshes with it, which drive pinion comprises a rigidly attached drive projection in a rotational bearing that is on a front face and eccentric to the pinion teething for coupling a motor vehicle steering spindle, said rotational bearing being guided in a direction transverse and parallel to a diametrical plane formed by the pinion teething, such that when the pinion is rotating, compensation strokes for the rotational bearing are specified in a direction transverse to the gear rack, said compensation strokes being caused by the eccentric attachment of the drive projection, a retaining projection rigidly attached at a front face concentrically to the pinion teeth, the retaining projection being rotatably in engagement with the retaining piece that is guided within a gear housing parallel to the gear rack teeth, is and that during pinion rotation compensation strokes parallel with and at a constant distance to the gear rack teeth are specified, which compensation strokes are caused by the eccentric attachment of the driving projection.
Abstract:
A rack and pinion drive may comprise a housing without a thrust piece connector, as well as a toothed rack that has a toothing arrangement and is slidably mounted in the housing. A pinion may be rotatably mounted in a bearing in the housing, wherein the pinion is positioned along a longitudinal axis. The pinion may have a toothing arrangement that engages with the toothing arrangement of the toothed rack. A bearing arrangement for mounting the bearing in the housing may include a guide piece that abuts the housing and has an internal guide face. Likewise, the bearing arrangement may include a sliding piece that surrounds the bearing and has an external guide face. The external guide face of the sliding piece is guided at least by the internal guide face of the guide piece such that the sliding piece is slidable at least in a direction of the longitudinal axis. As a result, the pinion is adjustable in a direction of the toothed rack.
Abstract:
An apparatus for pressing a rack against a pinion of a steering gear assembly includes a housing, a support yoke slidably guided in the housing along an axis, a bearing element that is fixed to the housing in an axial direction, a first elastic element providing an axial load acting upon the support yoke and the bearing element to urge the support yoke against the rack, a wear-compensating abutment member coacting with the bearing element such that a relative rotation about the axis generates an axial displacement of the abutment member relative to the bearing element, and a separate, second elastic element providing a load acting upon the abutment member in a circumferential direction to urge the abutment member against the support yoke.
Abstract:
A rack bush, which constitutes a rack and pinion type steering system and supports a rack shaft in which rack teeth are formed at one circumferential portion, includes a bush main body and a rigidity reducing portion. The bush main body has an annular shape into which the rack shaft is inserted. The bush main body is divided, in a circumferential direction, into two portions including a rack teeth-side portion located on the same side as the rack teeth in the circumferential direction and a back face-side portion other than the rack teeth-side portion. The rigidity reducing portion is provided in the rack teeth-side portion, and makes a rigidity of the rack teeth-side portion lower than a rigidity of the back face-side portion.
Abstract:
A pivot connection comprising a substantially cylindrical head (14) to be pivotally located into a socket, at least one first surface on the socket that engages one side of the outer surface of the cylindrical head (14), and second surfaces that engage the ends of the cylindrical head (14) on a side substantially opposite to the at least one first surface to thereby retain the cylindrical head (14) within the socket.
Abstract:
A rack and pinion type steering device capable of reducing contact surface pressure, suppressing the wear of contact surfaces, and preventing a rack guide movable amount from being excessively increased by increasing the contact area of the outer peripheral surface of roller on the outer peripheral surface of a rack shaft in a rack guide, and method of manufacturing the steering gear.
Abstract:
The invention relates to a linear drive, in particular a rack and pinion drive, comprising at least one motor element (2) which is mounted on or in a retaining element (1.1, 1.2). The motor element (2) drives, directly or indirectly, a pinion (4), optionally, via an integrated drive (3), said pinion co-operating with a linear guide (5). According to the invention, the retaining element (1.1, 1.2) can be displaced by at least one actuator (12.1 to 12.3) in relation to a receiving element (6).
Abstract:
A pivot connection comprising a substantially cylindrical head (14) to be pivotally located into a socket, at least one first surface on the socket that engages one side of the outer surface of the cylindrical head (14), and second surfaces that engage the ends of the cylindrical head (14) on a side substantially opposite to the at least one first surface to thereby retain the cylindrical head (14) within the socket.
Abstract:
An improved rack and pinion has been developed that eliminates backlash without using split gears. It is amenable to easy retrofitting of existing systems.