Abstract:
The assembly comprises a rack (2) and a pinion (1) each having an axis of symmetry (7, 8) perpendicular to each other in their transversal section. The rack (2) is located in a chamber (6) provided within a rigid body (5), this chamber (6) having a partly cylindrical inner wall (9), the axis of symmetry of the chamber (6) being merged into the rack axis (8). The track (2) includes a front face engaged with the pinion (1) and a rear face opposite the front face, this rear face comprising two lateral tapered sides (15) converging toward the rack axis (8) and an extending rib (13) having flat lateral sides (17) parallel to the rack axis. Within the rigid body (5), is provided a pair of members (31, 32) disposed symmetrically with respect to the rack axis (8), each member (31, 32) being rotatively slideable along the cylindrical inner wall (9), each of the members engaging one of the lateral tapered sides (15) at about one point and one of the lateral flat sides (17) at about one point, and further including a spring (4) located between ends of the members (31, 32) and urging the ends in opposite directions in such a way that the members (31, 32) bear on the rib (13) to generate an anti-ungearing force applied to the lateral tapered sides (15) of the rack (2).
Abstract:
A steering gear mechanism has in combination a housing, a pinion shaft rotatably in the interior of the housing and provided with a pinion thereon; a slidable rack bar guided the housing and formed on one surface thereof with a rack adapted to operatively engage with the pinion, and a friction device adapted to give rise to a relatively large frictional force in the directions of sliding motion of the rack bar in the neutral steering position, while giving rise to a relatively small frictational force in the same direction of sliding motion within the normal range of the steering operation of the rack bar.
Abstract:
A variable ratio rack and pinion gear having a rack bar (1) the rack (8) of which engages with the pinion (10) so that rotation of the pinion displaces the rack member (1) longitudinally relative to the housing (6). A yoke (25) supports the member (1) with its teeth in engagement with the pinion and straddles the member (1) to restrain displacement of that member relative to the housing (6) in a direction parallel to the axis of rotation for the pinion (10). The rack member is restrained from rotation relative to the housing, and (1) has a longitudinally extending non-rectilinear grooved track of one or more curved portions (14) which is engaged by a peg (17) rotatably carried in a mounting block (21). The block (21) retains the yoke (25) in the housing with the peg (17) located within and extending through the yoke (25). The peg (17) engages with the track (14) so that during longitudinal displacement of the rack member (1) the reaction between the groove (14) and peg (17) imparts limited controlled rotation to the member (1) to vary the ratio of the gear. Consequently, by appropriately shaping the track the gear assembly can be provided with a predetermined variable gear ratio. For example, the track may be a helix of variable pitch to provide the variable gear ratio. The peg can rotate in its mounting block (21) to alleviate friction between the peg and rack member (1) during displacement of the latter and can be spring biased to urge and support the rack member for engagement with the pinion.In a modification, the grooved track (14) is engaged by the peripheral edge of a rotatably mounted roller or wheel located within the yoke so that engagement between the roller and rack member (1) imparts rotation to the rack member to vary the gear ratio during displacement of the rack member.The teeth of the rack member can extend part way only around the periphery of that member while the non-toothed peripheral portion provides a slideway within which the groove (14) is machined and with which the yoke (25) slidably engages.
Abstract:
A rack and pinion steering gear unit is achieved that is capable of preventing an increase in operating force of the steering wheel and auxiliary operating force from a motor, and improving the response performance to minute operation when traveling straight. A pressing roller 34 elastically pushes the rear surface 29 of a rack shaft 9 toward a pinion shaft 5. This pressing roller 34 is supported by way of a radial needle bearing 16a by a support shaft 33 that is supported by and fastened to a holder 30 so as to be able to rotate freely. A thrust needle bearing 35 that receives a thrust load that is applied to the pressing roller 34 is provided between both side surfaces in the axial direction of the pressing roller 34 and the inside surface of the holder 30.
Abstract:
A rack and pinion steering gear unit is achieved that is capable of preventing an increase in operating force of the steering wheel and auxiliary operating force from a motor, and improving the response performance to minute operation when traveling straight. A pressing roller 34 elastically pushes the rear surface 29 of a rack shaft 9 toward a pinion shaft 5. This pressing roller 34 is supported by way of a radial needle bearing 16a by a support shaft 33 that is supported by and fastened to a holder 30 so as to be able to rotate freely. A thrust needle bearing 35 that receives a thrust load that is applied to the pressing roller 34 is provided between both side surfaces in the axial direction of the pressing roller 34 and the inside surface of the holder 30.
Abstract:
A steering gear assembly includes a pinion defining a pinion axis and a rack defining a rack axis. A bearing assembly includes a roller bearing biased against the rack to generate a normal force pressing the rack into engagement with the pinion. The bearing assembly engages an outer surface of the rack at two points circumferentially spanning a large angle to provide improved support. The roller bearing is preferably a plurality of ball bearings engaging an outer race. A deformable member may be utilized that is positioned between the outer race and the rack housing. The deformable member may comprise a series of O-rings which providing a force biasing the outer race towards the pinion.
Abstract:
A rack and pinion steering system for a motor vehicle including a supporting spindle receiving a guide roller, the roller is held at its two ends in a thrust piece via a needle bush at each end. The bush has a closed bottom which bears against an end face of the supporting spindle under prestress. The thrust piece is spring urged against the rack and the rack is spring engaged by the pinion via the urging of the thrust piece.
Abstract:
A rack and pinion steering gear assembly (10) for a vehicle comprises a housing (12) having a rack chamber (24) and a bearing chamber (35). The housing (12) has opposed slots (40, 42) opening into the bearing chamber (35). A rack (14) is movable in the rack chamber (24) in the housing (12) to effect steering movement of steerable wheels of the vehicle. A rotatable pinion (20) is in meshing engagement with the rack (14). An axle (70) located in the bearing chamber (35) in the housing (12) has opposite end portions (74, 76) located in the opposed slots (40, 42) in the housing. A bearing (60) is in engagement with the rack (14) and is supported on the axle (70) for rotation in the bearing chamber (35). A cover (90) supported on the housing (12) engages the axle (70) to hold the bearing (60) in engagement with the rack (14) and to hold the rack in engagement with the pinion (20).
Abstract:
A rack and pinion steering gear (10) comprises a housing (12). A pinion gear (24) is rotatably mounted in the housing (12). A rack bar (32) is movable relative to the pinion gear (24). The rack bar (32) has teeth in meshing engagement with the pinion gear (24). The rack and pinion steering gear (10) further comprises a yoke assembly (38) in the housing (12) for supporting and guiding movement of the rack bar (32) relative to the pinion gear (24). The yoke assembly (38) comprises a yoke (40) and a plurality of balls (64). The yoke (40) has a first surface (46) and a plurality of slots (52) which intersect the first surface (46). Each ball (64) is inserted into a respective slot (52). Each ball (64) projects from its respective slot (52) and beyond the first surface (46) of the yoke (40) when load conditions on the yoke assembly (38) are below a predetermined level. Each ball (64) is movable in its respective slot (52) relative to the first surface (46) of the yoke (40) as load conditions on the yoke assembly (38) change.
Abstract:
Disclosed is a rack and pinion mechanism used in a steering device of a vehicle, in which when a pinion is engaged with rack teeth at an axially middle part of a rack bar, the rack bar is supported by supporting surfaces of a support yoke in the form of surface contact. When the pinion is engaged with the rack teeth at a part other than the axially middle part of the rack bar, on the contrary, the rack bar is supported by a rotary bearing mounted on the support yoke. Therefore, when a vehicle runs rectilinearly, the sliding resistance of the rack bar becomes large and the handle is stabilized, while when the vehicle turns, the sliding resistance becomes small and handling is made light because the rack bar is supported by a bearing.