Abstract:
A multiple spectral imager includes three modular imaging spectrometers, each having a respective collimator, dispersing element, and imaging system. Each collimator includes a pair of parabolic reflectors having a common focal point and an elongated slit positioned at the focal point, and each collimator defines a pupil near the respective dispersing element. The dispersing elements disperse light from various positions along the slit of the collimator into the respective imaging system, and each of the imaging systems includes an array detector that intercepts the dispersed light from the respective dispersing element and registers spectral information in a first direction and spatial information in a second direction. The spectrometers are stacked adjacent to one another, and light from a single directing mirror enters the collimators of all three of the spectrometers. The three array detectors are each responsive to a separate respective spectral region.
Abstract:
A scanning monochromator includes a plurality of diffraction gratings mounted on a rotatable turret, so that each grating may be moved and precisely indexed into operative position. Each grating so positioned is angularly rotated about its axis by the same scanning arm, driven by a cam having two similar (but different) contours for producing one of two similar scanning functions for the various gratings. Preferably more interchangeable order-separating filters than gratings are included to insure complete and efficient filtering (e.g., 14 filters for 7 gratings). Both the stepping of the grating turret and of the filters (e.g., on a filter wheel) are controlled by (digital) signals, derived from the actual wavenumber being separated, as precisely read by (coarse and fine) digital encoder discs on the wavenumber scanning driving shafts (before and after a large-ratio reduction system). The digital control signals and a signal indicating the operative grating provide a readout of the wavenumber, directly usable by data processing apparatus. The closed loop digital nature of the control signals are free of any non-systematic errors, and allow the instrument to be ''''indexed'''' to any desired wavenumber (and then ''''instructed'''' to scan to any other wavenumber automatically).
Abstract:
A scanning monochromator includes a plurality of diffraction gratings mounted on a rotatable turret, so that each grating may be moved and precisely indexed into operative position. Each grating so positioned is angularly rotated about its axis by the same scanning arm, driven by a cam having two similar (but different) contours for producing one of two similar scanning functions for the various gratings. Preferably more interchangeable order-separating filters than gratings are included to insure complete and efficient filtering (e.g., 14 filters for 7 gratings). Both the stepping of the grating turret and of the filters (e.g., on a filter wheel) are controlled by (digital) signals, derived from the actual wavenumber being separated, as precisely read by (coarse and fine) digital encoder discs on the wavenumber scanning driving shafts (before and after a large-ratio reduction system). The digital control signals and a signal indicating the operative grating provide a readout of the wavenumber, directly usable by data processing apparatus. The closed loop digital nature of the control signals are free of any non-systematic errors, and allow the instrument to be ''''indexed'''' to any desired wavenumber (and then ''''instructed'''' to scan to any other wavenumber automatically).
Abstract:
A spectral radiation gas detector has at least one lenslet with a circular blazed grating for diffraction of radiation to a focal plane. A detector is located at the focal plane receiving radiation passing through the at least one lenslet for detection at a predetermined diffraction order. A plurality of order filters are associated with the at least one lenslet to pass radiation at wavelengths corresponding to the predetermined diffraction order, each filter blocking a selected set of higher orders. A controller is adapted to compare intensity at pixels in the detector associated with each of the plurality of order filters and further adapted to determine a change in intensity exceeding a threshold.
Abstract:
A spectral instrument including a light source configured to produce a light beam, the light beam comprising a plurality of wavelengths, and the light beam being about collimated or pseudo-collimated. The spectral instrument also includes a spectral dispersion device in optical communication with the light source. The spectral instrument also includes a screen disposed in the optical path after the spectral dispersion device. The screen comprises a material configured to be substantially opaque to at least some of the plurality of wavelengths. The screen is sized and dimensioned to at least partially block selected ones of the plurality of wavelengths. The screen is movable with respect to an axis of the screen. The spectral instrument also includes an imaging lens disposed in the optical path and disposed either after the screen or before the screen.
Abstract:
A spectral radiation gas detector has at least one lenslet with a circular blazed grating for diffraction of radiation to a focal plane. A detector is located at the focal plane receiving radiation passing through the at least one lenslet for detection at a predetermined diffraction order. A plurality of order filters are associated with the at least one lenslet to pass radiation at wavelengths corresponding to the predetermined diffraction order, each filter blocking a selected set of higher orders. A controller is adapted to compare intensity at pixels in the detector associated with each of the plurality of order filters and further adapted to determine a change in intensity exceeding a threshold.
Abstract:
A spectral instrument including a light source configured to produce a light beam, the light beam comprising a plurality of wavelengths, and the light beam being about collimated or pseudo-collimated. The spectral instrument also includes a spectral dispersion device in optical communication with the light source. The spectral instrument also includes a screen disposed in the optical path after the spectral dispersion device. The screen comprises a material configured to be substantially opaque to at least some of the plurality of wavelengths. The screen is sized and dimensioned to at least partially block selected ones of the plurality of wavelengths. The screen is movable with respect to an axis of the screen. The spectral instrument also includes an imaging lens disposed in the optical path and disposed either after the screen or before the screen.
Abstract:
Spectroscopy apparatus for spectrochemical analysis of a sample having an excitation source (60) for providing spectral light (62) of the sample for analysis. The spectral light (62) is analysed via an optical system (66-66-68) that includes a polychromator (70, 74-80) and solid state multielement array detector (82). The elements (i.e. pixels) of the detector (82) are serially read by means (84) to provide light intensity measurements as a function of wavelength. A problem is that the elements (pixels) of the detector (82) continue to accumulate charge during the serial read-out. This is avoided by providing an optical shutter (72) for blocking the spectral light (62) whilst elements (pixels) of the detector (82) are being serially read. Shutter (72) has a piezoelectric actuator which is preferably a bimorph mounted as a cantilever. It is preferably located adjacent to the entrance aperture (70) of the polychromator. Bimorph structures for the actuator and drive and protective circuit arrangements are also disclosed.
Abstract:
An individualized modeling equation for predicting a patient's blood glucose values is generated as a function of non-invasive spectral scans of a body part and an analysis of blood samples from the patient, and is stored on a central computer. The central computer predicts a blood glucose value for the patient as a function of the individualized modeling equation and a non-invasive spectral scan generated by a remote spectral device. If the spectral scan falls within the range of the modeling equation, the predicted blood glucose level is output to the patient. If the spectral scan falls outside the range of the modeling equation, regeneration of the model is required, and the patient takes a number of noninvasive scans and an invasive blood glucose level determination. The computer regenerates the individualized modeling equation as a function of the set of spectral scans and corresponding blood glucose values.