Abstract:
A flat-panel display employs an electronic focusing system which utilizes a repeller anode to repel low energy electrons emitted from a gas-discharge plasma which is controllably moved across a generally planar array of hollow-cathode elements.
Abstract:
A gas discharge display device has a discharge chamber and a post-acceleration chamber which are separated by a perforated control disc having line and column conductors thereon. The post-acceleration chamber is limited at its lateral boundary by at least one spacing frame which leaves the post-acceleration chamber support-free in its active volume. The inner boundary of the lateral spacing frame substantially coincides with the outer boundary of an active luminescent screen surface which limits one side of the post-acceleration chamber, and the frame has a width such that the inner frame boundary is free of sealing material and which further maintains a separation between the outer edge regions of the potential layers on the opposite sides of the post-acceleration chamber. A high post-acceleration voltage can thus be employed in the post-acceleration chamber without producing arcing.
Abstract:
A control plate for a gas discharge display device has a mechanically stable carrier plate of an electrically insulating material which has metallized column conductor tracks on one side and metallized row conductor tracks on an opposite side which in combination form a matrix of perpendicular rows and columns. The carrier plate has perforations extending through plate at points of intersection of the rows and columns. Each row and column is separately energizeable for selected transfer of electrons in the display device from one side of the plate to the other. The metallized tracks on each side extend a distance into the perforations so as to prevent charge accumulation within the perforations which would otherwise impair the control obtainable by the plate. The metallized portions of the perforations are separated by a ring of exposed carrier plate which is substantially nonconducting having a resistance of 100 megaohms or greater.
Abstract:
A plasma image display device with a gas discharge space and an electron acceleration space in which the gas discharge space is divided off from the electron acceleration space by a light transparent, high vacuum tight partition having a side facing a fluorescent screen which is provided with a photo cathode as an electron source to provide, due to high accelerating voltages, a high image amplification and good image definition.
Abstract:
This disclosure depicts a high-voltage cathodoluminescent gas discharge image display panel having an ordered array of display elements. The panel includes envelope means containing an ionizable gas at a predetermined very low pressure. The envelope means includes a transparent faceplate on the inner surface of which are disposed cathodoluminescent target elements. Electron source means produces at a given time at least one high-density electron beam, and includes means to cause a plasma sac to generate and gather electrons, and accelerate them to form a concentrated electron beam. An ultor electrode receiving a predetermined relatively high ultor voltage establishes a high voltage gradient in a plasma-free acceleration section which is effective to straight-line accelerate said electron beam in a substantially collision-free path directly into high-energy bombardment of the cathodoluminescent target elements. The panel includes light-stopping means whereby the useful visible light is solely that produced by high-energy electron bombardment of the target elements. Other structures including means for electron beam modulation are disclosed.
Abstract:
The invention relates to a gas discharge display device of the plasma panel type comprising a gas filled gas-tight enclosure which contains a front plate, a rear plate, and a control plate subdividing the interior of the enclosure into two chambers. The control plate bears, on its two sides, electrode paths which are capable of being actuated separately, and forming row and column conductors respectively, of a matrix, said control plate being perforated, together with these paths, at the intersection points of the matrix.In order to keep the front plate at a minimal distance of approximately 1 mm relative to the control plate, according to the invention, web-shaped spacing elements with an essentially constant wall thickness are provided. The spacing elements extend in the plane of the control plate, are led past the perforations of the control plate, and run, alternating in sections, essentially parallel to, or at an angle, respectively, to the matrix conductors facing the front plate.The invention finds application, especially, in the case of a plasma panel-type wherein a fluorescent screen is excited for light generation by means of high-energy electrons.
Abstract:
A display panel useful for realizing a very thin panel-shaped letter or figure display device or a panel-shaped TV set, wherein the small region of the fluorescent screen may be illuminated by the bombardment of charged particles; the control electrode, formed by providing a plurality of parallel metal electrode sheets on one principal surface of the insulating substrate, a plurality of parallel metal electrode sheets on the other principal surface orthogonal to the direction of arrangement of said former metal electrode sheets and holes penetrating through the insulating substrate at the part where said metal electrode sheets intersect across the insulating substrate, being made to contact the discharge plasma generated between the discharge electrodes; electrons or ions being taken out of the discharge plasma by applying a signal voltage to said metal electrodes of the control electrode and made to pass through the holes selectively, the transparent electrode comprising the fluorescent screen being provided on the side opposite to said discharge plasma with respect to said control electrode in parallel with said electrodes; and the electrons or ions passing through said holes being accelerated and made to collide with the fluorescent screen by the high voltage applied to said transparent electrode.