Abstract:
Apparatus apparatus for reading a color image by color separation with plural linear image sensors. The positional registration of color-separated images is achieved by reading a reference mark.
Abstract:
An image reading apparatus includes an image sensor to read a document, a sensor to detect whether the document is loaded on the image reading apparatus, and a processor to, when the sensor detects the document is loaded on the image reading apparatus, and before a scan instruction is input to the image reading apparatus, control the image sensor to execute a pre-scan job with respect to the loaded document using a default set value.
Abstract:
An image reading apparatus, an image reading method and a program are provided for favorably correcting color misalignment in a sub-scanning direction of a read signal read by a plurality of line sensors without increasing a circuit scale or processing time. To accomplish this, the image reading apparatus sets, as a reference signal, the read signal that is output from one of the plurality of line sensors, and detects a correlation between the reference signal and each of a plurality of read signals output from line sensors other than the one of the plurality of line sensors of a plurality of lines that are displaced in predetermined line units from a line from which the reference signal is read, and selects a read signal having a high correlation with the reference signal as a read signal from the line of the reference signal.
Abstract:
An apparatus for moving a unit to execute scanning includes a scanning unit including a motor, an encoder for outputting a signal according to movement of the unit, a detection unit for detecting a current supplied to the motor, a speed control unit for executing a speed control of the motor according to the signal output from the encoder and the current detected by the detection unit, a movement control unit for setting a threshold value, moving the unit by driving the motor, by using the speed control unit, and a current control unit for setting a value greater than the predetermined value according to the threshold value and value of the current detected by the detection unit at a predetermined timing during a time period while the unit is moving.
Abstract:
Provided is a detecting apparatus including an illumination optical system for emitting an image bearing member with a light beam emitted from a light source unit, an imaging optical system including an imaging optical element for imaging an image on the surface of the image bearing member, a light receiving unit for detecting the image on the image bearing member which has been imaged by the imaging optical system, and a calculation unit for detecting image information on the image on the image bearing member from a detection signal received from the light receiving unit. In the detecting apparatus, at least one optical plane of the imaging optical element is configured to refract an imaging system principal ray after passing therethrough in a direction of farther becoming apart from the light source unit than the imaging system principal ray before passing through the optical plane.
Abstract:
An image reading apparatus that optically reads a document includes: multiple line sensors provided approximately parallel to each other and each having light-receiving elements arranged in line form, each line sensor capturing respective line-shaped regions spanning in the main scanning direction of the document in respective color components; a movement unit that causes the positional relationship between the document and the multiple line sensors to move relative to the sub scanning direction that is orthogonal to the main scanning direction; a color skew adjustment unit that adjusts positional skew in the sub scanning direction in scan data of each of the color components captured by the multiple line sensors in synchronization with the movement caused by the movement unit, in accordance with an offset amount based on the distance between each of the multiple line sensors.
Abstract:
An overhead scanner device includes an area sensor, a linear sensor, and a control unit, wherein the control unit includes an area-image acquiring unit that controls the area sensor to successively acquire a plurality of images, a feature-point extracting unit that extracts feature points from the images acquired by the area-image acquiring unit, a velocity-vector computing unit that computes a velocity vector of each of the feature points by comparing the feature points extracted by the feature-point extracting unit between the images, and a read-start determining unit that determines a read start by the linear sensor, based on the velocity vector computed by the velocity-vector computing unit.
Abstract:
An image reader includes a light source that irradiates light to a recording material on which an image is formed, a generation section that receives light reflected from the recording material and generates image information from the received light, and a processing section that extracts information corresponding to a window region of the recording material set in advance, as correction information, from the image information generated by the generation section when light from the light source is irradiated to the recording material on which the image is formed.
Abstract:
A light scanning device is provided. The light scanning device includes: an oscillating mirror which oscillates rotationally and reflects a light beam to be scanned over a scanning range, the scanning range including a first scanning range and a second scanning range set across a center of the scanning range; a detection unit including a light receiving face, on which the light beam is incident, to detect the light beam; and first and second stationary mirrors which reflect the light beam reflected by the oscillating mirror to the first scanning range and the second scanning range, respectively, to be incident on the light receiving face, wherein an incident pattern of the light beam reflected by the first stationary mirror incident on the light receiving face is different from an incident pattern of the light beam reflected by the second stationary mirror incident on the light receiving face.
Abstract:
A cellular phone is provided with a media scanning capability. Scanner optics, an optional light source and related scanning circuitry is integrated within a cellular phone to enable image or text scanning, facsimile, text-to-speech conversion, and language translation. Position sensors provide position data as the scanner is manually moved, in one or more passes across the scanned media, to enable a bit-mapped image of the strip to be created in a data buffer. Image data from the strips is processed to remove redundant overlap data and skew position errors, to give a bit-mapped final image of the entire scanned item. Image compression is provided to compress the image into standard JPEG format for storage or transmission, or into facsimile format for transmission of the document to any fax machine. Optical character recognition (OCR) is provided to convert image data to text which may be sent as email, locally displayed, stored for later use, or further processed. Further processing of text data includes language translation and text to speech conversion of either the original or translated text. The resulting speech audio can be heard locally or transmitted over the cellular network.