Abstract:
An orthodontic appliance including a shell aligner having a portion accommodating movement of a patient's bracketed teeth between a first position and the second position as elicited by force from an orthodontic braces appliance worn by the patient, related systems and methods.
Abstract:
The present disclosure provides method, computing device readable medium, and devices for dental appliances with repositioning jaw elements. An example of a method can include identifying a misaligned jaw of a patient from a virtual image of the patient's jaw, providing a treatment plan for the patient including a virtual model of a dental appliance having a first shell and a second shell configured to reposition at least one tooth of the patient, and adjusting the position of the repositioning jaw elements on the first shell and the second shell to comply with a number of constraints. The virtual model of the dental appliance including repositioning jaw elements on the first shell and the second shell configured to move a position of the misaligned jaw of the patient.
Abstract:
An adhesive object for placement in a patients mouth includes a body with an upper surface and a lower surface, the body having a shape. A lower surface of the body includes an adhesive. An upper surface of the body includes a feature that may be detectable by an intraoral scanner, wherein at least one of the shape of the body or the feature on the upper surface provides a geometrical reference point for image registration of images generated by the intraoral scanner.
Abstract:
The present disclosure provides computing device implemented methods, computing device readable media, and systems for motion compensation in a three dimensional scan. Motion compensation can include receiving three-dimensional (3D) scans of a dentition, estimating a motion trajectory from one scan to another, and calculating a corrected scan by compensating for the motion trajectory. Estimating the motion trajectory can include one or more of: registering a scan to another scan and determining whether an amount of movement between the scans is within a registration threshold; determining an optical flow based on local motion between consecutive two-dimensional (2D) images taken during the scan, estimating and improving a motion trajectory of a point in the scan using the optical flow; and estimating an amount of motion of a 3D scanner during the scan as a rigid body transformation based on input from a position tracking device.
Abstract:
The present invention relates to systems and methods of developing and tracking delivery and patient progression through an orthodontic treatment plan. One method includes identifying deviations from an orthodontic treatment plan, including receiving a digital representation of an actual arrangement of a patient's teeth after an orthodontic treatment plan has begun for the patient and prior to completion of the orthodontic treatment plan. The method further includes comparing the actual arrangement to a pre-determined planned arrangement to determine if the actual arrangement substantially deviates from the planned arrangement, the comparing comprising matching teeth from a previously segmented model to a surface of an unsegmented representation of the actual arrangement; and calculating one or more positional differences between the actual and planned arrangements of at least some of the corresponding teeth.
Abstract:
The present disclosure includes dental appliances and methods of making and using such appliances. One method for forming a dental appliance includes forming a liquid thermoset polymer material into a semi-solid first shape, thermoforming the semi-solid first shape of thermoset polymer material onto a dentition mold, and curing the thermoset polymer on the dentition mold with a curative trigger to complete a molecular cross-linking reaction.
Abstract:
Creating a digital tooth model of a patient's tooth using interproximal information is provided. Interproximal information is received that represents a space between adjacent physical teeth of the patient. A digital teeth model of a set of physical teeth of the patient that includes the adjacent physical teeth is received. One or more digital tooth models is created that more accurately depicts one or more of the physical teeth than the corresponding digital teeth included in the digital teeth model based on the interproximal information.
Abstract:
A system for scanning a dental arch of a patient includes a reference element having a reference pattern thereon; a holding mechanism configured to hold the reference element in a fixed position inside the patient's oral cavity adjacent to and spaced from the dental arch, wherein the holding mechanism is configured to be installed on the patient without contacting an occlusal surface of the dental arch; and an intra-oral scanner configured to scan the dental arch and an adjacent portion of the reference element to obtain a scanned image comprising the scanned portion of the dental arch and the scanned adjacent portion of the reference pattern.
Abstract:
The present disclosure provides computing device implemented methods, apparatuses, and computing device readable media for confocal imaging using astigmatism. Confocal imaging can include receiving an image of a portion of an object captured by a confocal imaging device having a particular astigmatic character, determining an image pattern associated with the image, and determining a distance between a focus plane of the confocal imaging device and the portion of the object based, at least in part, on information regarding the image pattern. Confocal imaging can also include receiving data representing an image pattern associated with an image of an object captured by a confocal imaging device having a particular astigmatic character and having an image sensor with a plurality of pixels, and determining a positional relationship between the object and a focus plane of the confocal imaging device based on a distribution of the diffraction pattern over a portion of the plurality of pixels.
Abstract:
Practitioners are certified to perform a medical procedure, such as an orthodontic procedure. Certified practitioners are maintained in a referral directory and classified within tiers based on criteria such as the number of procedures that they have performed. Inquiries are solicited from prospective patients, and referral lists are provided to those patients who request them. The referral lists are obtained from the referral directory with doctors from higher tiers who have performed more procedures receiving preferential inclusion on the referral lists.