Abstract:
An electronic device may include a touchscreen having an array of finger touch sensitive areas, and a controller coupled to the touchscreen. The controller is configured to read touch values from the array of finger touch sensitive areas, and determine when the read touch values define a valid single finger touch pattern having lower touch values within adjacent higher touch values, and, if so, treating the read touch values as being representative of a single finger touch, and, if not, causing a finger separation determination.
Abstract:
A charge sensing circuit generates a voltage in a sensing period that is indicative of sensed charge. The generated voltages are accumulated by an accumulator circuit over a number of sensing periods. A noise detection circuit senses when the voltage generated by the charge sensing circuit is outside of a boundary and generates a detection signal in response thereto. A control circuit, in response to the detection signal, controls the accumulator circuit to block accumulation of the voltages generated by the charge sensing circuit during at least the sensing period in which the detection signal is generated. An analog-to-digital converter circuit then converts an accumulated output voltage from the accumulator circuit to a digital value at the end of an accumulation time period that includes the sensing periods. The end of the accumulation time period is delayed by at least one sensing period in response to the detection signal.
Abstract:
A method of estimating a steering vector of a sensor array of M sensors according to one embodiment of the present disclosure includes estimating a steering vector of a noise source located at an angle θ degrees from a look direction of the array using a least squares estimate of the gains of the sensors in the array, defining a steering vector of a desired sound source in the look direction of the array, and estimating the steering vector by performing element-by-element multiplication of the estimated noise vector and the complex conjugate of steering vector of the desired sound source. The sensors may be microphones.
Abstract:
A touch screen controller is for a drive line emitting a periodic signal and capacitively intersecting sense lines. A selection circuit, for each of a number of portions of the periodic signal equal to a number of the sense lines, couples a first subset of the sense lines to a first output path, and couples a second subset of the sense lines to a second output path, the second subset being sense lines not included in the first subset. Processing circuitry, for each portion of the periodic signal, measures a capacitance of the first output path, measures a capacitance of the second output path, and sums the capacitance of the first output path and the capacitance of the second output path. The processing circuitry determines a capacitance between each sense line of the first and second subsets and the drive line as a function of the sums.
Abstract:
The present invention is a system and method for digital watermarking, which discloses a system for digital watermarking, to add a watermark to an audio signal generated by a signal source. The system comprises: a spectrum modulator configured to perform spectrum modulation to a watermark bit and a pseudo noise signal to be embedded into the audio signal to generate a modulated signal; a distortion controller coupled to the signal source and the spectrum modulator and configured to shape the modulated signal based on the audio signal, so as to generate a shaped signal satisfying a predetermined distortion constraint; and an interference compensator coupled to the signal source and the distortion controller and configured to generate a compensation signal based on the audio signal, the pseudo noise signal, and the shaped signal, wherein the compensation signal is for compensating for interference to watermark decoding caused by the audio signal.
Abstract:
A video de-interlacing device includes a video data input interface to receive a stream of interlaced video data, a motion detector coupled to the video data input interface to produce motion detection video data, and a video data output interface to pass de-interlaced video data generated from the motion detection video data. The video de-interlacing device also includes a recursive motion processor to detect a still motion condition in at least one area of the motion detection video data. The recursive motion processor includes a local still detector, a large area motion detector, and a feathering detector. The recursive motion processor is arranged to produce motion information used to crop the motion detection video data based on the detected still motion condition.
Abstract:
A capacitive sensing structure comprises a plurality of first sensors electrically coupled to each other in a first direction, each first sensor comprising: a first arm extending along the first direction, and a second arm extending along a second direction perpendicular to the first direction and bisecting the first arm to form open regions at least partially defined by the first and second arm; a plurality of second sensors electrically coupled to each other in the second direction, each second sensor comprising: a first arm extending along the second direction, and a second arm extending along the first direction and bisecting the first arm to form open regions at least partially defined by the first and second arm; and a plurality of single electrically conductive and electrically floating structures, each disposed within open regions of adjacent first and second sensors.
Abstract:
A waveform generator circuit includes a memory with address locations storing output waveform defining data bits. An address counter generates an address for sequentially addressing the address locations in the memory. The memory responds by sequentially outputting the output waveform defining data bits at the addressed locations. An output circuit receives the waveform defining data bits output from the memory and operates to generate an output signal waveform having logic state values dependent on the sequentially output waveform defining data bits.
Abstract:
A waveform generator circuit includes a memory with address locations storing output waveform defining data bits. An address counter generates an address for sequentially addressing the address locations in the memory. The memory responds by sequentially outputting the output waveform defining data bits at the addressed locations. An output circuit receives the waveform defining data bits output from the memory and operates to generate an output signal waveform having logic state values dependent on the sequentially output waveform defining data bits.
Abstract:
The present invention is a system and method for digital watermarking, which discloses a system for digital watermarking, to add a watermark to an audio signal generated by a signal source. The system comprises: a spectrum modulator configured to perform spectrum modulation to a watermark bit and a pseudo noise signal to be embedded into the audio signal to generate a modulated signal; a distortion controller coupled to the signal source and the spectrum modulator and configured to shape the modulated signal based on the audio signal, so as to generate a shaped signal satisfying a predetermined distortion constraint; and an interference compensator coupled to the signal source and the distortion controller and configured to generate a compensation signal based on the audio signal, the pseudo noise signal, and the shaped signal, wherein the compensation signal is for compensating for interference to watermark decoding caused by the audio signal.