Abstract:
Aspects of the present disclosure provide techniques for design of channel raster for narrowband operation. One example method, performed by a base station, generally includes determining, based on one or more conditions, an exact frequency location of one channel of one or more channels to perform narrowband communications with a user equipment. The method also includes transmitting an indication of the one or more conditions to the user equipment. The method further includes communicating with the UE, based at least in part on the exact frequency location of the one channel.
Abstract:
A method of wireless communications includes adapting to downlink/uplink resource allocations. In particular, the downlink/uplink communications may be adjusted according to time division duplexed (TDD) configurations of serving and neighbor cells.
Abstract:
A method of wireless communication at a serving base station identifies a potential interference condition based on an uplink/downlink configuration mismatch. The method includes signaling, to a neighbor base station, to restrict transmissions based on the identified potential interference condition. The transmissions may be restricted by beamforming the transmissions into a different direction and/or blocking transmissions on a frequency. The signaling prompts the neighbor base station to restrict downlink transmissions that will potentially interfere with uplink control channel transmissions received at the serving base station, or to restrict uplink transmissions, intended for the neighbor base station, that will potentially interfere with downlink control channel transmissions from the serving base station.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communications, and more specifically to sounding reference signal (SRS) transmissions in enhanced machine type communication (MTC). An example method generally includes determining one or more narrowband regions partitioned from wider system bandwidth for communicating with a base station, determining resources, within the one or more narrowband regions of a first subframe, for transmission of sounding reference signals (SRS) by the UE, deciding whether or not to transmit SRS on the determined resources of the first subframe, and transmitting or not transmitting the SRS on the determined resources of the first subframe based on the decision.
Abstract:
Aspects of the present disclosure provide techniques for design of synchronization signals for narrowband operation and other clean-slate, OFDM based systems such as enhanced component carrier (eCC) systems. An example method is provided for operations which may be performed by a BS to generate and transmit a dual-layer PSS, and correspondingly, techniques for a UE to detect the dual-layer PSS. The PSS may be generated utilizing a binary code cover and at least one sequence applied to a number of symbols within one or more subframes of a frame.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus transitions to a dormant state and transmits a very low duty cycle signal (LDCS) while in the dormant state. The apparatus may transmit an LDCS configuration to a second entity, the second entity being one of an LPN that is not in a dormant state and a macro cell. The apparatus may further monitor for a RACH messages at a predetermined RACH delay after transmitting the LDCS. The apparatus may transition to a DRX/DTX mode. The DRX/DTX mode may be matched to at least one connected UE.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for managing cyclic redundancy check field lengths in wireless communications. An exemplary method generally includes determining a size of a cyclic redundancy check (CRC) field, from a plurality of possible sizes for a given type of physical wireless channel, to be used for a transmission to be sent on the physical wireless channel, and performing communication based on the transmission on the physical wireless channel with the CRC field of the determined size.
Abstract:
A modified subframe structure is defined for a subset of a plurality of subframes. The modified subframe structure includes a first portion with one or more blank symbols over which a network node can measure monitor to determine whether the subframe is used as a downlink (or uplink) subframe by a neighboring network node. The modified subframe structure can also include a second portion of symbols for communicating control information or data in the subframe, which can be based on determining whether the subframe is used as a downlink (or uplink) subframe by the neighboring network node. This can lessen the impact of possible interference caused by the network nodes dynamically switching time division duplexing (TDD) subframe configurations by enabling network nodes to determine when a neighboring node is transmitting in a subframe, and accordingly avoiding transmitting in the subframe.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives an LDCS configuration for a UE relay from a second entity and monitors for an LDCS from the UE relay based on the received LDCS configuration. The second entity may comprise one of an LPN that is not in a dormant state and a Macro cell. The apparatus may receive LDCS configurations for a plurality of LPNs and monitor for a plurality of LPNs based on the received LDCS configurations. When the apparatus determines a need to connect to a LPN, the apparatus may select an LPN among the plurality of LPNs.
Abstract:
Techniques are provided for aggregating carriers with different carrier configurations. The carriers may include both time division duplex (TDD) and frequency division duplex (FDD) carriers which may be configured such that control information for both carrier types is conveyed by the TDD carrier. In one aspect, an association between a set of subframes, including both TDD and FDD subframes, is determined. The association may operate to distribute control information for the FDD carrier over uplink subframes of the TDD carrier to achieve a load balancing. Alternatively, the association may operate to minimize a hybrid automatic repeat request (HARQ) feedback delay. The TDD carrier may provide resource grants for the aggregated carriers and the association may be used to identify subframes from both carriers which may be scheduled in a given DL subframe.