Abstract:
An enclosure, wherein the enclosure is at least partly formed of a layered material (3), the inner layer (1) of the layered material being formed of porous metal and the outer layer (2) of the layered material being formed of hygroscopic porous material.
Abstract:
A converter arrangement can include a first rectifier having an AC input and a DC output with two DC output poles, a capacitance (C) connected between the DC output poles of the first rectifier, a second rectifier having an AC input with two AC input poles and a DC output with two DC output poles, wherein the DC output of the second rectifier is connected between the DC output poles of the first rectifier. A magnetic amplifier includes at least one control winding (L2) and at least one AC winding (L11, L12), wherein the at least one control winding is connected between the DC output poles of the first rectifier, and wherein the at least one AC winding (L2) of the magnetic amplifier is connected in series with the AC input of the second rectifier.
Abstract:
An exemplary method for charging a capacitance connected between DC poles of a three-phase active rectifier/inverter and a converter apparatus including a three-phase active rectifier/inverter having a capacitance connected between DC poles thereof, a three-phase filter and a three-phase step-down transformer. The active rectifier/inverter is configured to charge the capacitance connected between the DC poles of the active rectifier/inverter with a rectified secondary voltage of the transformer until a voltage of the capacitance reaches a first predetermined threshold voltage. In response to the voltage of the capacitance connected between the DC poles of the active rectifier/inverter reaching the first predetermined threshold voltage, the active/rectifier/inverter is configured to charge the capacitance with a boosted rectified secondary voltage of the transformer until the voltage of the capacitance reaches a second predetermined threshold voltage higher than the first predetermined threshold voltage.
Abstract:
An exemplary method of heat transfer in power electronics applications is disclosed, wherein a metal foil including at least about 50% of tin, based on a total amount of metals contained in the metal foil, is used as a thermal interface material between a base plate of a heat-generating component and a heat sink. The metal foil is disposed on a heat sink. A base plate of a heat generating component or module is disposed on the heat sink covered by the metal foil to provide a power electronics device. A clamping force is applied to the power electronics assembly to provide a cooled power electronics assembly.
Abstract:
To automate establishment of an ad hoc connection between a user apparatus and a device, username-password pairs and identifying information-code pairs are maintained in a database server. The user apparatus sends an inquiry identifying information of the device and a username and a password of a user of the user apparatus, and receives in a response a code for establishing the ad hoc connection.
Abstract:
A method is provided for connecting a main converter, e.g. for use in a power plant for regenerative energy having a generator, to a power grid. The method includes providing energy from the pre-charge unit to at least one of at least two converter paths. The at least one converter path is pre-charged using the energy provided from the pre-charge unit. At least one further converter path of the at least two converter paths is pre-charged using the energy provided from the pre-charge unit via the at least one converter path through the grid side converter of the at least one converter path and the grid side converter of the at least one further converter path. The main converter is connected to the power grid by closing the grid breaker.
Abstract:
A method for data transfer of an electric device configuration, the electric device configuration comprising a plurality of converter devices including a first converter device and a second converter device, each of the converter devices comprising a first converter unit having a first power connection and a second power connection, the first power connection arranged to supply direct current power to the first converter unit and the second power connection arranged to supply electric power from the first converter unit, and the first power connections of the first converter units being electrically connected to one another. The method comprises transmitting information by the first converter device by causing changes in the voltage of the first power connection of the first converter unit of the first converter device, and receiving information by the second converter device based on identifying the changes in the voltage of the first power connection of the first converter unit of the second converter device.
Abstract:
The present disclosure describes a two-stage method for estimating an angle offset of an angle sensor in a system comprising a permanent-magnet synchronous motor. An initial value for the estimated angle offset is first determined with a short circuit test. Next, a torque of the motor may be controlled so that the motor is maintained at a zero speed. Minor adjustments are made to the value of the angle offset to find a minimum magnitude of stator current. A value at which the stator current is at its minimum is used as a final angle offset.
Abstract:
An electrical multi-phase converter and method for controlling an electrical multi-phase converter is disclosed. In one form a method provides for controlling the electrical multi-phase converter comprises: determining at least two supply voltages for the at least two converter cells of the at least two phase branches; determining a potential zone for each phase branch based on the at least one supply voltage of the at least one converter cell of the phase branch, the potential zone bounding a possible actual phase voltage producible by the phase branch; receiving a reference voltage for each phase branch; and, if the reference voltage for a phase branch is not within the potential zone of the phase branch, setting the reference voltage to a bound of the potential zone and shifting reference voltages of other phase branches, wherein the reference voltages are set and shifted such that a minimal common mode voltage between the output voltages of the multi-phase converter is generated.