Abstract:
A process of oxidizing cyclohexane, comprising feeding cyclohexane, an aqueous hydrogen peroxide solution and optionally an organic solvent into a reaction zone through a feed inlet thereof under the oxidation reaction conditions for contact, and providing all or most of the oxidation product at the reaction zone bottom, wherein a part or all of the packing in the reaction zone is a titanium silicate molecular sieve-containing catalyst. The process of oxidizing cyclohexane according to the present invention carries out the oxidation in the reaction zone, which, firstly, utilizes the latent heat from reaction sufficiently so as to achieve energy-saving; secondly, increases the yield of target product and the availability of oxidizer; and thirdly, allows the separation of the oxidation product from the raw material cyclohexane as the reaction proceeds, such that the cost for subsequent separations can be saved.
Abstract:
Techniques for an image-based CAPTCHA for object recognition are described. The disclosure describes adding images to a database by collecting images by querying descriptive keywords to an image search engine or crawling images from the Internet.The disclosure describes generating the image-based CAPTCHA. The image is retrieved from the database, along with objects having significant values. An object is cropped from its image. The portion on the image where the object has been cropped is filled with image inpainting. The process obtains other objects from the database. The object is mixed among the other objects to form a set of candidate objects. A user is asked to select “the object” from the set of candidate objects that fits or matches the image. The image-based CAPTCHA evaluates whether a response, the selection, is from a human or a bot.
Abstract:
Disclosed are compounds, compositions and methods for treating various diseases, syndromes, conditions and disorders, including pain. Such compounds are represented by Formula (I) as follows: wherein Y, Z, R1, and s are defined herein.
Abstract:
Disclosed are compounds, compositions and methods for treating various diseases, syndromes, conditions and disorders, including pain. Such compounds are represented by Formula (I) as follows: wherein Y, Z, R1, and s are defined herein.
Abstract:
Disclosed are compounds, compositions and methods for treating various diseases, syndromes, conditions and disorders, including pain. Such compounds are represented by Formula (I) as follows: wherein Y, Z, R1, and s are defined herein.
Abstract:
Disclosed are compounds, compositions and methods for treating various diseases, syndromes, conditions and disorders, including pain. Such compounds are represented by Formula I as follows: wherein A, B, L, Q, R1, R2, and R3 are defined herein.
Abstract:
Disclosed are compounds, compositions and methods for treating various diseases, syndromes, conditions and disorders, including pain. Such compounds, and enantiomers, diastereomers, and pharmaceutically acceptable salts thereof, are represented by Formula (Ia) and Formula (Ib) as follows: wherein Y, Z, and n are defined herein; and wherein Yb and Zb are as defined herein.
Abstract:
A method and system is provided for encrypting an image compressed with a JPEG2000-based compression with minimal overhead so that the encrypted codestream is compliant with the syntax of the JPEG2000-based compression and can be scaled without decrypting. The encryption system generates, for each independent encryption segment of a codestream for an image, a unique initialization vector from a global initialization vector in such a way that the initialization vectors can be generated during decryption from the global initialization vector, even after truncation. The encryption system encrypts each independent encryption segment using its unique initialization vector. The encryption system ensures that the encrypted codestream is compliant with the syntax of the JPEG2000-based compression both as originally generated and as truncated by an encryption-unaware device.
Abstract:
In a peer-to-peer environment, copyrights and users' privacies can be protected by a tracking mechanism. In described implementations, tracking mechanisms can use certificates that are produced using random numbers to protect the privacy of users and/or certificates that are produced responsive to at least one hardware identifier to enable uploader to be identified to protect copyrights.
Abstract:
A fast and secure syntax compliant encryption schema, “locally iterative encryption,” can produce compliant ciphertext for a general syntax specification. In one implementation, an engine partitions a data stream into blocks, and encrypts each block iteratively until syntax compliance conditions are met. A system using the schema can utilize either stream ciphers or block ciphers in different modes. Locally iterative encryption methods are fast and remain at approximately the same speed even as the length of the data stream to be encrypted increases. Besides providing superior processing speed, the locally iterative encryption schema is also more robust to errors in the resulting ciphertext and in the resulting decrypted plaintext than conventional syntax compliant encryption techniques. Locally iterative encryption is secure as long as an underlying encryption cipher selected for use in the schema is secure.