Abstract:
A method, apparatus, and article for solving the year 2000 problem involves limited modifications in the data definition portions of the source code and compiler or interpreter support for processing the modified source code. Fields in the source code that contain a year or date values are identified and, for each such field, the user selects an appropriate technique (for example, expansion, compression or windowing). The user modifies the data definition for each identified field, by adding new attributes to request the selected technique. The user then compiles or interprets the program and resolves any ambiguous references to the variables whose definitions were modified. This procedure is applied, module by module, and each processed module is merged into production, after testing, by using a compiler option to disable the use of the new attributes. A compiler or interpreter option provides for the generation of debugger hooks for each statement that has been affected by modified declarations, which may be used with a suitably equipped debugger or other run-time analysis tool.
Abstract:
Gyroscopic apparatus in which the rotor is elastically-connected to its drive, whereby deflection of the rotor bends the connection and thus sets up a deflection torque which acts upon the rotor. The connection of the rotor to the drive also includes masses carried by springs. When the rotor deflects, these masses oscillate in directions parallel to the driving axis, and when the rotor is spinning at a certain (tuning) speed the sum of the oscillating forces exerted upon the rotor by the individual moving masses will be a steady quantity which may be made equal and opposite to the deflection torque. The apparatus may thus behave like a "free rotor" gyroscope.
Abstract:
An air circulation and/or purification device for recirculating air and/or removing contaminants from the air which includes a housing having a top with an opening for air intake and a bottom, a fan contained within the housing, and a plurality of air output vents contained within multiple sides of the housing near the bottom of the housing. The bottom of the housing may include a conical shaped portion extending inward from the bottom of the housing or other structures to assist in expelling air from the housing in at least two different directions. The device may also include one or more filters designed to capture and filter out different types of contaminants.
Abstract:
A surgical device is provided, the surgical device including a first driver for performing a first movement function; a second driver for performing a second movement function; a first rotatable drive shaft configured, upon actuation, to cause selective engagement of one of the first and second drivers with a second rotatable drive shaft, wherein the second rotatable drive shaft is configured to drive the selectively engaged one of the first and second drivers. Third and fourth drivers may also be included. The drivers may function to rotate a shaft portion of the surgical device relative to, and about the longitudinal axis of, a handle; move a jaw portion relative to the shaft portion; move a first jaw relative to a second jaw; and/or move a surgical member within the second jaw.
Abstract:
A surgical device is provided that includes a jaw portion, having a first jaw in opposed correspondence with a second jaw, the second jaw including a surgical member. The surgical device may include a shaft portion coupled to a proximal end of the jaw portion and at least one motor configured to rotate the jaw portion relative to the shaft portion, to move the jaw portion relative to the shaft portion, move the first jaw relative to the second jaw and move the surgical member within the second jaw. The surgical member may be prevented from moving within the second jaw unless the first jaw is in a closed position relative to the second jaw. Advantageously, the surgical member may be, e.g., a cutting element and/or a stapling element, disposed within one of the jaws.
Abstract:
A surgical device is provided, the surgical device including a first driver for performing a first movement function; a second driver for performing a second movement function; a first rotatable drive shaft configured, upon actuation, to cause selective engagement of one of the first and second drivers with a second rotatable drive shaft, wherein the second rotatable drive shaft is configured to drive the selectively engaged one of the first and second drivers. Third and fourth drivers may also be included. The drivers may function to rotate a shaft portion of the surgical device relative to, and about the longitudinal axis of, a handle; move a jaw portion relative to the shaft portion; move a first jaw relative to a second jaw; and/or move a surgical member within the second jaw.
Abstract:
A surgical device is provided that includes a jaw portion, having a first jaw in opposed correspondence with a second jaw, the second jaw including a surgical member. The surgical device may include a shaft portion coupled to a proximal end of the jaw portion and at least one motor configured to rotate the jaw portion relative to the shaft portion, to move the jaw portion relative to the shaft portion, move the first jaw relative to the second jaw and move the surgical member within the second jaw. The surgical member may be prevented from moving within the second jaw unless the first jaw is in a closed position relative to the second jaw. Advantageously, the surgical member may be, e.g., a cutting element and/or a stapling element, disposed within one of the jaws.
Abstract:
A surgical device is provided that includes a jaw portion, having a first jaw in opposed correspondence with a second jaw, the second jaw including a surgical member. The surgical device may include a shaft portion coupled to a proximal end of the jaw portion and at least one motor configured to rotate the jaw portion relative to the shaft portion, to move the jaw portion relative to the shaft portion, move the first jaw relative to the second jaw and move the surgical member within the second jaw. The surgical member may be prevented from moving within the second jaw unless the first jaw is in a closed position relative to the second jaw. Advantageously, the surgical member may include one or both a cutting element or a stapling element, disposed within one of the jaws.
Abstract:
A power adaptor for a computer discovers the power environment when it is plugged into a socket and sends a signal to the computer along the power line indicating the environment, so that the computer can configure operations accordingly.
Abstract:
A surgical device is provided that includes a jaw portion, having a first jaw in opposed correspondence with a second jaw, the second jaw including a surgical member. The surgical device may include a shaft portion coupled to a proximal end of the jaw portion and at least one motor configured to rotate the jaw portion relative to the shaft portion, to move the jaw portion relative to the shaft portion, move the first jaw relative to the second jaw and move the surgical member within the second jaw. The surgical member may be prevented from moving within the second jaw unless the first jaw is in a closed position relative to the second jaw. Advantageously, the surgical member may be, e.g., a cutting element and/or a stapling element, disposed within one of the jaws.