Abstract:
In some embodiments, an intervertebral implant may include a body including a superior and an inferior surface. The implant may include a first channel extending from an anterior end towards the posterior end of the body. The implant may include a first anchor channel. The implant may include a first guide member positionable in the first channel. The implant may include a first anchor. When the first guide member moves from a first position to a second position the first anchor may be conveyed through the first anchor channel and couple the body to an adjacent vertebra. In some embodiments, the implant may include a first locking mechanism which inhibits, during use, the first guide member from moving from the second position to the first position upon activation of the first locking mechanism.
Abstract:
In some embodiments, an intervertebral implant may include a body including a superior and an inferior surface. The implant may include a first channel extending from an anterior end towards the posterior end of the body. The implant may include a first anchor channel The implant may include a first guide member positionable in the first channel The implant may include a first anchor. When the first guide member moves from a first position to a second position the first anchor may be conveyed through the first anchor channel and couple the body to an adjacent vertebra.
Abstract:
A system and method may be used to evaluate soft tissue. A knee arthroplasty soft tissue evaluation may use an adjustable spacer, such as varying sized physical spacers or an inflatable bladder, along with a sensor to measure force, pressure, gap distance, or the like during a range of motion test. A method may include maintaining an equal pressure or gap distance for a medial component and a lateral component of an adjustable spacer during a range of motion test. Information, including, for example a maximum or minimum gap distance or pressure may be determined during the range of motion test. The determined information may be output for display or used to update a surgical plan.
Abstract:
A device including a housing having a passage extending therethrough defining a drive shaft axis; a drive shaft supported within the passage and rotatable about the drive shaft axis; a drive housing defining a reaming axis and pivotably coupled to the housing to allow the reaming axis to deflect with respect to the drive shaft axis, a drive interface supported within the drive housing and rotatable about the reaming axis, the drive interface contacting the drive shaft such that rotation of the drive shaft about the drive shaft axis causes rotation of the drive interface about the reaming axis; and an angle adjustment control positioned remotely from a distal end of the housing and operably coupled to the drive housing to move the drive housing between a first position and a second position to define respective first and second offset angles between the reaming axis and the drive shaft axis.
Abstract:
A method includes receiving by a controller, a surgeon-specific surgery profile for an implantation of an implant into a joint, implant profiles, a patient-specific post-surgery desired functional profile of the joint after the implantation, and bone registration data for a first bone member and a second bone member of a patient are inputted into a surgical plan model to generate a surgical plan. The surgical plan model is designed to achieve the patient-specific post-surgery desired functional profile based at least in part on a plurality of dependencies between a plurality of surgical parameters, the implant profiles, at least one functional parameter representative of the expected functional performance of the joint, and movement-related data of the joint. The surgical plan is outputted on a graphical user interface (GUI) on a surgery assistant device to facilitate the implantation.
Abstract:
A kit including (1) a plate configured to be secured to a scapular spine with a first end of the plate near a trigonum and a second end of the plate near an acromion; (2) a first hook including a mount, a first hook portion extending from the mount in a first direction, a spacer extending from the first hook portion in a transverse direction, and a second hook portion extending from an opposite end of the spacer in the first direction, the first hook adapted to extend around a lateral end of the acromion when fixed to the second end of the plate; and (3) a second hook including a mount, a curved portion curving away from the mount, and a hook portion at an opposite end of the curved portion, the second hook adapted to extend around the trigonum when fixed to the first end of the plate.
Abstract:
A device including a first plate configured to interface with a first bone structure of a joint; a second plate configured to interface with a second bone structure of the joint opposite the first bone structure; and at least one mechanical actuation mechanism disposed between the first plate and the second plate and configured to apply a distraction force along an axis between the first plate and the second plate so as to urge the first plate and the second plate away from one another, wherein the device is configured so as to have a range of motion ranging from a minimum distance between the first plate and the second plate to a maximum distance between the first plate and the second plate, and wherein the mechanical actuation mechanism is configured such that the distraction force is substantially constant distraction force across the range of motion.
Abstract:
A system and method may be used to evaluate soft tissue. A knee arthroplasty soft tissue evaluation may use an adjustable spacer, such as varying sized physical spacers or an inflatable bladder, along with a sensor to measure force, pressure, gap distance, or the like during a range of motion test. A method may include maintaining an equal pressure or gap distance for a medial component and a lateral component of an adjustable spacer during a range of motion test. Information, including, for example a maximum or minimum gap distance or pressure may be determined during the range of motion test. The determined information may be output for display or used to update a surgical plan.
Abstract:
A system and method may be used to evaluate soft tissue. A hip joint evaluation may use an adjustable spacer, such as varying sized physical spacers or an inflatable bladder, along with a sensor to measure force, pressure, gap distance, or the like, for example during a range of motion test. A method may include using a maximum pressure during the range of motion test to determine a maximum pressure during the range of motion test. The maximum pressure may be output for display on a user interface.