Abstract:
Methods and apparatuses are disclosed for reducing the read time of a memory array. In one embodiment, the method includes sampling unknown data values from a plurality of memory elements, buffering the unknown values, writing known values to the plurality of memory elements and sampling the known values, and comparing the known values to the buffered values.
Abstract:
A magnetic memory array is described having a plurality of bit cells. Each bit cell includes at least one magnetic layer having free magnetic poles with a corresponding demagnetization field. A magnetic flux absorbing layer is disposed between at least two of the plurality of bit cells.
Abstract:
An input/output (I/O) circuit of a memory device performs I/O and stores data for write-backs. The write-back data may be used for destructive read operations. The I/O circuit may also be configured to perform data balancing, write-verifies and built-in self test (BIST).
Abstract:
A system and a method for imaging a scene of interest utilize variable exposure periods that have durations based upon detecting a fixed voltage drop in order to determine the scene segment radiance. The rate of voltage drop corresponds to the degree of scene segment radiance, such that high radiant scene segments yield faster voltage drops than lower radiant scene segments. The variable exposure period is determined within each pixel in a pixel array of the system to gather exposure periods from different segments of the scene being imaged. The measured exposure periods are translated into grayscale information that can be used to generate a composite image having various levels of grayscale that is representative of the imaged scene. Each pixel includes a photo sensor, an analog-to-digital converter and a memory to measure, digitize and store the exposure period. The memory contains a number of memory cells having a three-transistor configuration that are each connected to a bi-directional bit line. The bi-directional bit line functions as both a read bit line and a write bit line. The three-transistor configuration allows for non-destructive read-outs of data stored in the memory cells.
Abstract:
An imaging apparatus and a method of capturing and storing an image in digital form within a photosensitive area of the apparatus include integrating an array of memory cells within each pixel of the photosensitive area. Preferably, the memory cells are dual port memory cells, such that write operations can be performed in a parallel manner while reading operations are performed in a serial manner. In the preferred embodiment, each array contains a sufficient number of memory cells to store two digital words representing a photo signal and a reference signal. A comparator within each pixel operating in unison with a counter and a ramp generator captures the photo signal and the reference signal in digital form. The design of the imaging apparatus allows each pixel in the photosensitive area to capture and store the signals in a parallel manner. The parallel function of the apparatus increases the electronic shutter speed, while the integrated memory array eliminates the need for an external frame buffer memory.
Abstract:
An image sensor array. The image sensor array includes a substrate. An array of photo diode sensors are electrically interconnected to the substrate. The photo diode sensors conduct charge at a rate proportional to the intensity of light received by the photo diode sensors. A ring of guard diodes are located around the periphery of the array of photo diode sensors. Each guard diode has a guard diode anode connected to a predetermined guard anode voltage and a guard diode cathode connected to a static guard cathode voltage.
Abstract:
A memory structure has an antifuse material that is unpatterned and sandwiched between each of a plurality of antifuse electrode pairs. The antifuse material is continuous between the antifuse electrode pairs. Furthermore the present invention includes a memory structure comprising a plurality of antifuse electrode pairs forming a plurality of row conductors and a plurality of middle conductors in electrical communication with a plurality of control elements.
Abstract:
A sense amplifier applies an operating potential to a selected bit line and an equal potential to a subset of unselected lines during a read operation on a memory cell in a resistive cross point array of an information storage device. Before a resistance state of the selected memory cell is sensed, however, an input of the sense amplifier is forced to a known, consistent condition. The sense amplifier input may be forced to the known, consistent condition by pulling up the input to an array voltage.
Abstract:
A pixel within an array of pixels in which each pixel cell includes circuitry for generating its own DC balance data by utilizing the display data that is transferred to the pixel from an external source. Each pixel cell includes an initial storage node that branches into two separate storage nodes, the first of the branched nodes being used to store data that is used for display by the pixel and the second of the branched nodes being used to generate and hold the DC balance data. Once the display data has been displayed by the pixel, the DC balance data is multiplexed to the pixel and the pixel is driven according to the DC balance data. Generating the DC balance data within a pixel cell, instead of transferring DC balance data to the pixel cell from an external source, reduces the data transfer load to the pixel cell by approximately one-half.
Abstract:
A write circuit for a large array of memory cells of a Magnetic Random Access Memory (“MRAM”) device. The write circuit can provide a controllable, bi-directional write current to selected word and bit lines without exceeding breakdown limits of the memory cells. Additionally, the write circuit can spread out the write currents over time to reduce peak currents.