Abstract:
Word shift static random access memory (WS-SRAM) cell, word shift static random access memory (WS-SRAM) and method using the same employ dynamic storage mode switching to shift data. The WS-SRAM cell includes a static random access memory (SRAM) cell having a pair of cross-coupled elements to store data, a dynamic/static (D/S) mode selector to selectably switch the WS-SRAM cell between the dynamic storage mode and a static storage mode, and a column selector to selectably determine whether or not the WS-SRAM cell accepts shifted data. The WS-SRAM includes a plurality of WS-SRAM cells arranged in an array and a controller to shift data. The method includes switching a storage mode and activating a column selector of, coupling data from an adjacent memory cell to, and storing the coupled data in, a selected WS-SRAM cell.
Abstract:
A digital current source used to mirror a reference current is provided. The digitally controlled analog current source multiplies a current from a master mirror transistor producing an output current that is a digitally controlled multiple of the reference current. The circuit comprises a plurality of one bit current mirror cells. Each one bit current mirror cell comprises a mirror transistor receiving an analog gate voltage from a master mirror transistor and providing a drain voltage, an operational amplifier configured to maintain the drain voltage for the mirror transistor equivalent to the analog gate voltage, and a switch configured to receive one control bit, the switch enabling current mirroring when the mirror voltage is substantially equivalent to the master mirror voltage. The digital current source further includes a common line summing element employed to receive and compile currents from each of the one bit current mirror cells.
Abstract:
A memory device includes a first layer of MRAM memory cells arranged in accordance with an MRAM architecture, a second layer of MRAM memory cells that is fabricated over the first layer of MRAM memory cells, and a common connection associated with the first layer of MRAM memory cells and the second layer of MRAM memory cells that facilitates operation of the memory device. The method of fabricating the memory device includes fabricating a first layer of MRAM memory cells arranged in accordance with an MRAM architecture, fabricating a second layer of MRAM memory cells over the first layer of MRAM memory cells, and fabricating a common connection associated with the first layer of MRAM memory cells and the second layer of MRAM memory cells that facilitates operation of the memory device.
Abstract:
A gain stage in a sense amplifier receives an input signal representing a stored value and senses if the input signal is less than or not less than a reference signal and generates an output signal indicative of a first state when the input signal is less than the reference signal and an output signal indicative of a second state when the input signal is not less than the reference signal. The gain stage further comprises an integrated latch configured to latch the output signal in either the first or second state. Additionally, a controller operates a sense amplifier having multiple operating modes. Sample mode switch logic causes the sense amplifier to sample a first voltage applied to the sense amplifier's input and hold and compare mode switch logic causes the sense amplifier to hold the first voltage for comparison with a second voltage applied to the sense amplifier's input.
Abstract:
The present invention provides a magnetic memory device that includes a magnetic memory cell switchable between two states by the application of a magnetic field wherein the magnetic field for such switching is dependent in part on a memory cell temperature. The device further includes at least one heater element proximate to the magnetic memory cell and series connected with the magnetic memory cell for heating of the magnetic memory cell. The device also includes a circuit for selectively applying the electrical current through the at least one heater element so as to heat the cell and facilitate cell state-switching.
Abstract:
A resistive cross point memory cell array comprising a plurality of word lines, a plurality of bit lines, a plurality of cross points formed by the word lines and the bit lines, and a plurality of memory cells, each of the memory cells being located at a different one of the cross points, wherein a first bit line comprises a distributed series diode along an entire length of the bit line such that each of the associated memory cells located along the first bit line is coupled between the distributed series diode and an associated word line.
Abstract:
A method and apparatus are disclosed for adjusting the offset voltage of a circuit. In one embodiment, the method comprises: supplying reference and supply voltages to the circuit, controlling a voltage across a memory element to be approximately equal to the reference voltage, comparing the current through the memory element to a predetermined value, and adjusting an offset voltage of the circuit, where the offset may remain substantially constant despite changes in the supply voltage.
Abstract:
Programming of a programmable resistive memory device includes supplying programming power to the device; generating feedback as to when the device has been programmed; and removing the programming power when the feedback indicates that the device has been programmed.
Abstract:
A system and method for determining the logic state of a magnetic tunnel junction (MTJ) memory device. The method includes applying a first bias voltage to a selected line and measuring a first induced voltage across the MJT device or a memory cell. The method also includes applying a second bias voltage to the selected line, the second bias voltage being different from the first bias voltage, and measuring a second induced voltage across the MJT device. The method also includes comparing a function of the first bias voltage, the first induced voltage, the second bias voltage, and the second induced voltage to a threshold value.
Abstract:
The invention includes an apparatus and method for selecting a desirable magnitude of a magnetic memory cell write current. The method includes determining a minimal magnitude of write current for writing to the magnetic memory cell, determining a maximal magnitude of write current for writing to the magnetic memory cell, and calculating the selected magnitude of magnetic memory cell write current based on the minimal magnitude of write current and the maximal magnitude of write current.