Active antenna transmitter
    42.
    发明授权

    公开(公告)号:US11528042B1

    公开(公告)日:2022-12-13

    申请号:US17202194

    申请日:2021-03-15

    Abstract: A transmitting circuit. In some embodiment, the transmitting circuit includes a slot antenna and an amplifier. The slot antenna may include a slot in a conductive sheet, and it may have a first resonant frequency, the first resonant frequency being within 20% of a slot frequency which is between a first frequency corresponding, in a first volume, to a wavelength twice the length of the slot, and a second frequency corresponding, in a second volume, to a wavelength twice the length of the slot. The amplifier may be connected to the slot through a connection including a conductive path, between the amplifier and the slot, having a length less than 0.2 times the length of the slot. The magnitude of the output impedance of the amplifier may be less than 0.25 times the magnitude of the impedance of the slot antenna at a first resonant frequency.

    SEMI-PASSIVE CONTROL OF SOLIDIFICATION IN POWDERED MATERIALS

    公开(公告)号:US20220314316A1

    公开(公告)日:2022-10-06

    申请号:US17838000

    申请日:2022-06-10

    Abstract: Disclosed herein are surface-functionalized powders which alter the solidification of the melted powders. Some variations provide a powdered material comprising a plurality of particles fabricated from a first material, wherein each of the particles has a particle surface area that is continuously or intermittently surface-functionalized with nanoparticles and/or microparticles selected to control solidification of the powdered material from a liquid state to a solid state. Other variations provide a method of controlling solidification of a powdered material, comprising melting at least a portion of the powdered material to a liquid state, and semi-passively controlling solidification of the powdered material from the liquid state to a solid state. Several techniques for semi-passive control are described in detail. The methods may further include creating a structure through one or more techniques selected from additive manufacturing, injection molding, pressing and sintering, capacitive discharge sintering, or spark plasma sintering.

    Spiking neural network for probabilistic computation

    公开(公告)号:US11449735B2

    公开(公告)日:2022-09-20

    申请号:US16577908

    申请日:2019-09-20

    Abstract: Described is a system for computing conditional probabilities of random variables for Bayesian inference. The system implements a spiking neural network of neurons to compute the conditional probability of two random variables X and Y. The spiking neural network includes an increment path for a synaptic weight that is proportional to a product of the synaptic weight and a probability of X, a decrement path for the synaptic weight that is proportional to a probability of X, Y, and delay and spike timing dependent plasticity (STDP) parameters such that the synaptic weight increases and decreases with the same magnitude for a single firing event.

    Jammer-suppressed photonic-enabled RF link

    公开(公告)号:US11438075B1

    公开(公告)日:2022-09-06

    申请号:US16514600

    申请日:2019-07-17

    Inventor: Daniel Yap

    Abstract: A radio frequency (RF) link includes a link transmitter that includes a data modulator for modulating a data waveform together with an RF carrier, a photonic encoder coupled to the data modulator, and a transmitter antenna for transmitting an RF signal, wherein the RF signal comprises an output of the photonic encoder, and a link receiver including a receiver antenna for receiving the RF signal, a first laser source, a photonic limiter coupled to the first laser source and to the receiving antenna, a photonic decoder coupled to the photonic limiter, a photo-receiver coupled to the photonic decoder, and a demodulator coupled to the photo-receiver for demodulating an output of the photo-receiver with the RF carrier to form a data output.

    Noise suppression in a phononic comb

    公开(公告)号:US11431293B1

    公开(公告)日:2022-08-30

    申请号:US17348344

    申请日:2021-06-15

    Abstract: A method and apparatus for increasing the Signal-to-Noise Ratio (SNR) of phononic comb teeth generated by a non-linear resonator. The method comprises generating a drive signal; applying the drive signal to the non-linear resonator with sufficient gain to generate the phononic comb teeth; and filtering the drive signal before applying it to the non-linear resonator to thereby increase the Signal-to-Noise Ratio (SNR) of phononic comb teeth generated by the non-linear resonator. The apparatus may comprise a circuit including a filter disposed between an oscillator generating the drive signal and the non-linear resonator, the filter preferably having a 3 db passband width which is less than a spacing of the phononic comb teeth generated by the non-linear resonator.

    ANISOTROPIC THERMALLY CONDUCTIVE POLYMERS AND METHODS OF MAKING AND USING THE SAME

    公开(公告)号:US20220251449A1

    公开(公告)日:2022-08-11

    申请号:US17542488

    申请日:2021-12-05

    Abstract: Some variations provide an anisotropic thermally conductive polymer composition comprising a plurality of polarizable, thermotropic main-chain liquid-crystal polymer molecules with crystalline domains. The liquid-crystal polymer molecules are in a nematic phase or a smectic phase, and at least 80% of the crystalline domains are aligned along a crystal axis. A method of making an anisotropic thermally conductive polymer composition comprises: synthesizing or obtaining a polymer containing polarizable domains; heating the polymer to form a polymer melt; cooling the polymer melt to form a thermotropic liquid-crystal polymer; exposing the thermotropic liquid-crystal polymer to an electrical field, thereby aligning the polarizable domains along a crystal axis; and recovering the thermotropic liquid-crystal polymer as an anisotropic thermally conductive polymer composition. The polymer composition may be formed into an object characterized by thermal conductivity along the minimum dimension that is at least three times greater than thermal conductivity along the maximum dimension.

    Back-gated quantum well heterostructure

    公开(公告)号:US11367786B1

    公开(公告)日:2022-06-21

    申请号:US17080752

    申请日:2020-10-26

    Inventor: Andrew S. Pan

    Abstract: A semiconductor device. In some embodiments, the semiconductor device includes a back gate layer; a buffer layer, on the back gate layer; a device quantum well layer, on the buffer layer; a cap layer, on the device quantum well layer; a top layer, on the cap layer; a first doped region of a first conductivity type, extending at least part-way through the device quantum well layer; a second doped region, of a second conductivity type, within the buffer layer; and a third doped region, of the second conductivity type extending from the top layer to the second doped region. The top layer may include a dielectric layer, and, in the dielectric layer, a plurality of conductive elements, including one or more dot gates, an ohmic contact, a bath gate, a supply gate, and a halo contact.

Patent Agency Ranking