Abstract:
A method of fabricating a substrate for a liquid crystal display device includes: disposing a transparent substrate on a stage of a laser apparatus; irradiating a laser beam having a predetermined power onto the transparent substrate to form a light shielding region in the transparent substrate surrounding first to third light transmitting regions; and forming a color filter layer including red, green and blue sub-color filters respectively in the first to third light transmitting regions, wherein boundaries of the red, green and blue sub-color filters correspond to the light shielding region.
Abstract:
A method for fabricating a LCD having enhanced aperture ratio and brightness includes: forming a gate line, a gate electrode, a common electrode and a common line in a first mask process; depositing a gate insulating layer covering the gate line, the gate electrode and the common electrode; forming an active layer on the gate insulating layer, and an ohmic contact layer on the active layer in a second mask process; forming a data line, a source electrode, and a drain electrode facing the source electrode in a third mask process; depositing a protective layer over the data line, the source electrode and the drain electrode; forming a pixel contact hole in a fourth mask process; and forming a pixel electrode, wherein the pixel electrode is connected to the drain electrode through the pixel contact hole in a fifth mask process using a reverse tapered photo-resist pattern.
Abstract:
A flat panel display includes a substrate, an array on the substrate, and a glass film formed by depositing glass powder over the substrate, including the array, melting the deposited glass powder over the array and hardening the deposited glass powder over the array.
Abstract:
A liquid crystal display device and its fabrication method may prevent occurrence of light leakage generated from the sides of a data line. A dummy pattern at sides of the data line with glass powder as an insulation film may simplify the repairing process. A method for fabricating a liquid crystal display device includes a gate electrode, a gate line, a dummy pattern and a first insulation film that are formed on a substrate. A switching element is formed on a portion of the gate electrode and includes a source electrode, a drain electrode and an active layer. A data line formed at a portion of the dummy pattern. A second insulation film is formed on the substrate and has a first contact hole that exposes a portion of the drain electrode. A pixel electrode is formed on the substrate and is electrically connected with the drain electrode through the first contact hole.
Abstract:
A thin film transistor array substrate and a method for manufacturing the thin film transistor array substrate are disclosed. Specifically, a thin film transistor array may be formed using a reduced number of masks.
Abstract:
A method for forming a pattern and a method for fabricating an LCD device using the same is disclosed, wherein a photoresist layer is removed from a substrate without using a photoresist stripper, so that the pattern is formed with a low fabrication costs. The method comprising sequentially forming a pattern material layer, a transformed material layer and a photoresist layer on a substrate; patterning the photoresist layer by exposure and development using a mask; selectively etching the transformed material layer and the pattern material layer by using the patterned photoresist layer as a mask; and removing the transformed material layer and the patterned photoresist layer in a lift-off method by applying light.
Abstract:
In the liquid crystal display panel of a horizontal electric field type, a gate pattern includes a gate electrode provided at a substrate, a gate line connected to the gate electrode and a lower gate pad electrode connected to the gate line. A data line is disposed to cross the gate line and the common line, having a gate insulating film therebetween to thereby define a pixel area. A thin film transistor is positioned at each intersection between the gate line and the data line. A transparent electrode pattern includes a pixel electrode electrically connected to the thin film transistor and disposed such that at least a portion thereof is parallel to the common electrode. An opaque conductive pattern is disposed to overlap with the transparent electrode pattern.
Abstract:
Provided is a liquid crystal display (LCD) device and a fabrication method thereof. An array substrate for the LCD includes a gate line formed on a substrate, and a gate electrode extending from the gate line; a data line intersected with the gate line, wherein the data line is configured with a gate insulating layer, a semiconductor layer and a data metal layer; a pixel electrode formed of a first transparent metal layer at a pixel which is defined by an intersection of the gate line and the data line; a source electrode extending from the data line, and a drain electrode spaced apart from the source electrode by a predetermined distance to expose a channel; and a second transparent metal layer pattern formed on the data line, the source electrode and the drain electrode, wherein the second transparent metal layer connects the drain electrode and the pixel electrode to each other.
Abstract:
Provided is a liquid crystal display (LCD) device and a fabrication method thereof. An array substrate for the LCD includes a gate line formed on a substrate, and a gate electrode extending from the gate line; a data line intersected with the gate line, wherein the data line is configured with a gate insulating layer, a semiconductor layer and a data metal layer; a pixel electrode formed of a first transparent metal layer at a pixel which is defined by an intersection of the gate line and the data line; a source electrode extending from the data line, and a drain electrode spaced apart from the source electrode by a predetermined distance to expose a channel; and a second transparent metal layer pattern formed on the data line, the source electrode and the drain electrode, wherein the second transparent metal layer connects the drain electrode and the pixel electrode to each other.
Abstract:
A simplified method for forming a pad electrode without using an additional light-irradiation device is disclosed. The method includes forming a gate pad on a substrate, forming a gate insulating layer on a substrate surface, forming a data pad on the gate insulating layer, forming a passivation layer on the substrate surface, forming a first contact hole in the gate insulating layer and the passivation layer, forming a second contact hole in the passivation layer, coating a conductive photoresist on the substrate surface, and forming a gate pad electrode in the first contact hole and a data pad electrode in the second contact hole by ashing the conductive photoresist. The pad electrode is formed in a simple method of ashing the conductive photoresist, thereby decreasing costs.