Abstract:
In a liquid crystal display apparatus, a lower substrate has a transmissive electrode formed in a transmissive area of a first substrate and a reflective electrode formed in a reflective area of the first substrate. An upper substrate has a second substrate, a first insulating layer formed on the second substrate corresponding to the transmissive area, a common electrode formed on the first insulating layer and the second substrate corresponding to the reflective area, and a second insulating layer formed on the common electrode corresponding to the reflective area. Accordingly, the liquid crystal display apparatus may have a uniform cell gap, thereby improving a reflectance and a transmittance thereof.
Abstract:
A liquid crystal display panel includes a liquid crystal layer having a twist angle of ±10 degree. An upper polarizer is disposed over an upper substrate of the liquid crystal display panel, and includes an absorption axis forming at an angle of 47±10 degree in a clockwise direction with respect to a major axis. An upper λ/2 retardation film is disposed between the upper substrate and the upper polarizer, and includes Δnd1 of 260±10 nm and a slow axis forming at an angle of 166±10 degree in the clockwise direction with respect to the absorption axis. An upper λ/4 retardation film is disposed between the upper substrate and the upper λ/2 retardation film, and includes Δnd2 of 140±10 nm and a slow axis forming at an angle of 111±10 degree in the clockwise direction with respect to the absorption axis. Therefore, the optical condition of the optical film assembly is optimized to improve an image display quality.
Abstract:
A method for manufacturing a semiconductor device is capable of increasing the size of a landing plug without loss of an insulating film separating the landing plug, and may be advantageously used for reducing contact resistance by enlarging a landing plug contact hole without causing the loss of the insulating film due to a cleaning solution during a wet cleaning process. The semiconductor device manufacturing method includes the steps of: forming a gate over a semiconductor substrate and forming an interlayer insulating film filling spaces between the gates; selectively etching the interlayer insulating film to form a landing plug contact hole; forming a primary landing plug filling the landing plug contact hole preferably by a selective epitaxial growth method; forming, over the gate, a buffer dielectric film of an over-hang structure; and forming, over the primary landing plug, a secondary landing plug as a conductive film.
Abstract:
In a liquid crystal display apparatus, a lower substrate has a transmissive electrode formed in a transmissive area of a first substrate and a reflective electrode formed in a reflective area of the first substrate. An upper substrate has a second substrate, a first insulating layer formed on the second substrate corresponding to the transmissive area, a common electrode formed on the first insulating layer and the second substrate corresponding to the reflective area, and a second insulating layer formed on the common electrode corresponding to the reflective area. Accordingly, the liquid crystal display apparatus may have a uniform cell gap, thereby improving a reflectance and a transmittance thereof.
Abstract:
The present invention discloses a thin film transistor array substrate, a method for manufacturing the array substrate, and a liquid crystal display. The present invention further discloses a liquid crystal display having a reflective area and a transmissive area, which the image quality can be enhanced with. The present invention also discloses a liquid crystal display that has a liquid crystal layer whose thickness is depends on position.
Abstract:
An optical includes an optical body including a plurality of side faces where one of the plurality of side faces defines a light entrance face onto which a blue light is incident. A light exit face is connected to at least one of the side faces, and a yellow fluorescent layer is disposed on the light entrance face and is configured to convert the blue light into a white light.
Abstract:
An input/output device includes: a level shifter configured to convert an input signal of a first voltage into an output signal of a second voltage; and an output driver configured to operate in response to the output signal. The level shifter is configured to generate the output signal with a predetermined level when the first voltage is interrupted to supply.
Abstract:
A method for fabricating a semiconductor device includes forming electrode patterns over a substrate, wherein the electrode patterns include a hard mask, forming a passivation layer on the electrode patterns, forming an insulation layer on the passivation layer, filling a space between the electrode patterns, planarizing the insulation layer until shoulder portions of the hard mask are planarized, forming a mask pattern on a resultant structure, and etching a portion of the insulation layer to form a contact hole.
Abstract:
A liquid crystal display, in accordance with the present invention, includes a first substrate having a thin film transistor and a first electrode formed thereon. The first electrode is electrically connected to the thin film transistor. A first insulating layer is formed on the first substrate including the thin film transistor and the first electrode and a window is formed in the first insulating layer, the window exposing a predetermined region of the first electrode. A second electrode is provided on the first insulating layer and electrically connected to the first electrode. A second substrate includes a third electrode formed thereon. A first gap is formed between a surface of the third electrode and a surface of the predetermined region of the first electrode, and a second gap is formed between the surface of the third electrode and a surface of the second electrode. A liquid crystal layer is interposed between the first gap and the second gap. Other embodiments are included as well as methods for forming the liquid crystal display of the present invention.
Abstract:
In a stereoscopic image conversion panel for enhancing display quality and a stereoscopic image display apparatus having the panel, the stereoscopic display panel includes lower and upper transparent substrates, lower and upper transparent electrodes, and a liquid crystal lens layer. The lower and upper transparent substrates face each other. The lower transparent electrodes are disposed on the lower transparent substrate, formed along a first direction, and formed substantially in parallel with each other along a second direction. The upper transparent electrodes are disposed on the upper transparent substrate, formed along the second direction, and formed substantially in parallel with each other along the first direction. The liquid crystal lens layer is disposed between the upper and lower transparent substrates, and a longitudinal arrangement direction of liquid crystal molecules of the liquid crystal lens layer is changed by an electric field to have a predetermined refractive index. Therefore, a refracted incident light produces a stereoscopic image for enhancing display quality.