摘要:
Data storage reliability is maintained in a write-back distributed data storage system including multiple nodes. Information is stored as a stripe including a collection of a data strips and associated parity strips, the stripe distributed across data and parity nodes. Each data node maintains the data strip holding a first copy of data, and each parity node maintains a parity strip holding a parity for the collection of data strips. A driver node initiates a full-stripe-write parity update protocol for maintaining parity coherency in conjunction with other nodes, to keep the relevant parity strips coherent. Parity is determined directly by computing parity strips for all data strips of a stripe. Any node may function as a driver node.
摘要:
Provided are a computer program product, sequential access storage device, and method for managing data in a sequential access storage device receiving read requests and write requests from a system with respect to tracks stored in a sequential access storage medium. A prefetch request indicates prefetch tracks in the sequential access storage medium to read from the sequential access storage medium. The accessed prefetch tracks are cached in a non-volatile storage device integrated with the sequential access storage device, wherein the non-volatile storage device is a faster access device than the sequential access storage medium. A read request is received for the prefetch tracks following the caching of the prefetch tracks, wherein the prefetch request is designated to be processed at a lower priority than the read request with respect to the sequential access storage medium. The prefetch tracks are returned from the non-volatile storage device to the read request.
摘要:
Data storage reliability is maintained in a write-back distributed data storage system including multiple nodes. Information is stored as a stripe including a collection of a data strips and associated parity strips, the stripe distributed across data and parity nodes. Each data node maintains the data strip holding a first copy of data, and each parity node maintains a parity strip holding a parity for the collection of data strips. A driver node initiates a full-stripe-write parity update protocol for maintaining parity coherency in conjunction with other nodes, to keep the relevant parity strips coherent. Parity is determined directly by computing parity strips for all data strips of a stripe. Any node may function as a driver node.
摘要:
Embodiments of the invention relate to throttling accesses to a flash memory device. The flash memory device is part of a storage system that includes the flash memory device and a second memory device. The throttling is performed by logic that is external to the flash memory device and includes calculating a throttling factor responsive to an estimated remaining lifespan of the flash memory device. It is determined whether the throttling factor exceeds a threshold. Data is written to the flash memory device in response to determining that the throttling factor does not exceed the threshold. Data is written to the second memory device in response to determining that the throttling factor exceeds the threshold.
摘要:
Embodiments of the invention relate to throttling accesses to a flash memory device. The flash memory device is part of a storage system that includes the flash memory device and a second memory device. The throttling is performed by logic that is external to the flash memory device and includes calculating a throttling factor responsive to an estimated remaining lifespan of the flash memory device. It is determined whether the throttling factor exceeds a threshold. Data is written to the flash memory device in response to determining that the throttling factor does not exceed the threshold. Data is written to the second memory device in response to determining that the throttling factor exceeds the threshold.
摘要:
Embodiments of the invention relate to storing data in a storage array. An aspect of the invention includes receiving write data. The write data is arranged into “r” rows and “n” columns of pages, with each page including a plurality of sectors. The write data is encoded using a plurality of horizontal and vertical erasure correcting codes on the pages. The encoding allows recovery from up to tr erasures in any one of the r rows, up to tr-1 erasures in any one of the remaining r−1 rows, up to tr-2 erasures in any one of the remaining r−2 rows, and so on, such that the encoding allows recovery from up to t1 erasures in the last remaining row. Encoded write data is output from the encoding. The encoded write data is written as a write stripe across n storage devices in a storage array.
摘要:
Data storage reliability is maintained in a write-back distributed data storage system including multiple nodes. Each node comprises a processor and an array of failure independent data storage devices. Information is stored as a set of stripes, each stripe including a collection of at least a data strip and associated parity strips, the stripes distributed across a primary data node and multiple corresponding parity nodes. A read-other parity update protocol maintains parity coherency. The primary data node for each data strip drives parity coherency with the corresponding parity nodes, independently of other data nodes, in keeping relevant parity strips for the primary data node coherent. A parity value is determined based on data other than a difference between new data and existing data. A new parity value is based on new data and dependent data, wherein with respect to one data value, dependent data comprises other data encoded in a corresponding parity value.
摘要:
A RAID system is provided for detecting and correcting dropped writes in a storage system. Data and a checksum are written to a storage device, such as a RAID array. The state of the data is classified as being in a “new data, unconfirmed” state. The state of written data is periodically checked, such as with a timer. If the data is in the “new data, unconfirmed” state, it is checked for a dropped write. If a dropped write has occurred, the state of the data is changed to a “single dropped write confirmed” state and the dropped write error is preferably corrected. If no dropped write is detected, the state is changed to a “confirmed good” state. If the data was updated through a read-modified-write prior to being checked for a dropped write event, its state is changed to an “unquantifiable” state.
摘要:
Data validation systems and methods are provided. Data is recorded in N data chunks on one or more storage mediums. A first validation chunk independently associated with said N data chunks comprises first validation information for verifying accuracy of data recorded in said N data chunks. The first validation chunk is associated with a first validation appendix comprising second validation information, wherein the first validation appendix is stored on a first storage medium independent of said one or more storage mediums.
摘要:
A collective storage system and method for restoring data in the system after a failure in the system. The system includes multiple storage nodes that are interconnected by a network and store data as extents. There are also a set of Data Service (DS) agents for managing the extents, a set of Metadata Service (MDS) agents for managing metadata relating to the nodes and the extents, and a Cluster Manager (CM) agent in each node. After a node failure is detected by one of the CM agents, the agents responsible for coordinating the data restoring are notified of the failure. The agents generate a plan to restore the data extents affected by the failure, and then collectively restoring the affected extents based on the generated plan. The coordinating agents might be the MDS agents or DS agents. The failure might be a node failure or a disk failure.