摘要:
Provided are a computer program product, system, and method for prefetching data tracks and parity data to use for destaging updated tracks. A write request is received including at least one updated track to the group of tracks. The at least one updated track is stored in a first cache device. A prefetch request is sent to the at least one sequential access storage device to prefetch tracks in the group of tracks to a second cache device. A read request is generated to read the prefetch tracks following the sending of the prefetch request. The read prefetch tracks returned to the read request from the second cache device are stored in the first cache device. New parity data is calculated from the at least one updated track and the read prefetch tracks.
摘要:
Provided are a computer program product, sequential access storage device, and method for managing data in a sequential access storage device receiving read requests and write requests from a system with respect to tracks stored in a sequential access storage medium. A prefetch request indicates prefetch tracks in the sequential access storage medium to read from the sequential access storage medium. The accessed prefetch tracks are cached in a non-volatile storage device integrated with the sequential access storage device, wherein the non-volatile storage device is a faster access device than the sequential access storage medium. A read request is received for the prefetch tracks following the caching of the prefetch tracks, wherein the prefetch request is designated to be processed at a lower priority than the read request with respect to the sequential access storage medium. The prefetch tracks are returned from the non-volatile storage device to the read request.
摘要:
Provided are a computer program product, sequential access storage device, and method for managing data in a sequential access storage device receiving read requests and write requests from a system with respect to tracks stored in a sequential access storage medium. A prefetch request indicates prefetch tracks in the sequential access storage medium to read from the sequential access storage medium. The accessed prefetch tracks are cached in a non-volatile storage device integrated with the sequential access storage device, wherein the non-volatile storage device is a faster access device than the sequential access storage medium. A read request is received for the prefetch tracks following the caching of the prefetch tracks, wherein the prefetch request is designated to be processed at a lower priority than the read request with respect to the sequential access storage medium. The prefetch tracks are returned from the non-volatile storage device to the read request.
摘要:
Embodiments of the invention relate to throttling accesses to a flash memory device. The flash memory device is part of a storage system that includes the flash memory device and a second memory device. The throttling is performed by logic that is external to the flash memory device and includes calculating a throttling factor responsive to an estimated remaining lifespan of the flash memory device. It is determined whether the throttling factor exceeds a threshold. Data is written to the flash memory device in response to determining that the throttling factor does not exceed the threshold. Data is written to the second memory device in response to determining that the throttling factor exceeds the threshold.
摘要:
Provided are a computer program product, sequential access storage device, and method for managing data in a sequential access storage device receiving read requests and write requests from a system with respect to tracks stored in a sequential access storage medium. A prefetch request indicates prefetch tracks in the sequential access storage medium to read from the sequential access storage medium. The accessed prefetch tracks are cached in a non-volatile storage device integrated with the sequential access storage device, wherein the non-volatile storage device is a faster access device than the sequential access storage medium. A read request is received for the prefetch tracks following the caching of the prefetch tracks, wherein the prefetch request is designated to be processed at a lower priority than the read request with respect to the sequential access storage medium. The prefetch tracks are returned from the non-volatile storage device to the read request.
摘要:
Embodiments of the invention relate to storing data in a storage array. An aspect of the invention includes receiving write data. The write data is arranged into “r” rows and “n” columns of pages, with each page including a plurality of sectors. The write data is encoded using a plurality of horizontal and vertical erasure correcting codes on the pages. The encoding allows recovery from up to tr erasures in any one of the r rows, up to tr-1 erasures in any one of the remaining r-1 rows, up to tr-2 erasures in any one of the remaining r-2 rows, and so on, such that the encoding allows recovery from up to t1 erasures in the last remaining row. Encoded write data is output from the encoding. The encoded write data is written as a write stripe across n storage devices in a storage array.
摘要:
Data storage reliability is maintained in a write-back distributed data storage system including multiple nodes, each node comprising a processor and an array of failure independent data storage devices. Information is stored as a set of stripes, each stripe including a collection of multiple data strips and associated parity strips, the stripes distributed across multiple corresponding primary data nodes and multiple corresponding parity nodes. A primary data node maintains the data strip holding a first copy of data, and each parity node maintains a parity strip holding a parity for the multiple data strips. A read-modify-write parity update protocol is performed for maintaining parity coherency, the primary data node driving parity coherency with its corresponding parity nodes, independently of other data nodes, in order to keep its relevant parity strips coherent.
摘要:
Data storage reliability is maintained in a write-back distributed data storage system including multiple nodes. Information is stored as a stripe including a collection of a data strips and associated parity strips, the stripe distributed across data and parity nodes. Each data node maintains the data strip holding a first copy of data, and each parity node maintains a parity strip holding a parity for the collection of data strips. A driver node initiates a full-stripe-write parity update protocol for maintaining parity coherency in conjunction with other nodes, to keep the relevant parity strips coherent. Parity is determined directly by computing parity strips for all data strips of a stripe. Any node may function as a driver node.
摘要:
A RAID system is provided for detecting and correcting dropped writes in a storage system. Data and a checksum are written to a storage device, such as a RAID array. The state of the data is classified as being in a “new data, unconfirmed” state. The state of written data is periodically checked, such as with a timer. If the data is in the “new data, unconfirmed” state, it is checked for a dropped write. If a dropped write has occurred, the state of the data is changed to a “single dropped write confirmed” state and the dropped write error is preferably corrected. If no dropped write is detected, the state is changed to a “confirmed good” state. If the data was updated through a read-modified-write prior to being checked for a dropped write event, its state is changed to an “unquantifiable” state.
摘要:
Method, system and computer program product are provided for detecting and correcting dropped writes in a storage system. Data and a checksum are written to a storage device, such as a RAID array. The state of the data is classified as being in a “new data, unconfirmed” state. The state of written data is periodically checked, such as with a timer. If the data is in the “new data, unconfirmed” state, it is checked for a dropped write. If a dropped write has occurred, the state of the data is changed to a “single dropped write confirmed” state and the dropped write error is preferably corrected. If no dropped write is detected, the state is changed to a “confirmed good” state. If the data was updated through a read-modified-write prior to being checked for a dropped write event, its state is changed to an “unquantifiable” state.