Abstract:
Disclosed herein is an apparatus and method for separating a foreground and a background. The apparatus includes a background model creation unit for creating a code book including a plurality of code words in order to separate the foreground and the background, and a foreground/background separation unit for separating the foreground and the background using the created code book. The method includes the steps of creating a code book including a plurality of code words in order to separate the foreground and the background, rearranging the cord words of the created code book on the basis of the number of sample data that belong to each of the code words, and separating the foreground and the background using the code book.
Abstract:
A method of deforming a shape of a human body model includes the steps of reorganizing human body model data into a joint-skeleton structure-based Non-Uniform Rational B-spline (NURBS) surface model, generating statistical deformation information about control parameters of the NURBS surface model based on parameters of joints and key section curves for specific motions, and deforming the shape of the human body model based on the NURBS surface model and the statistical deformation information. The human body model data includes three-dimensional (3D) human body scan data and a 3D polygon mesh.
Abstract:
A method of reconstructing a 3D model includes reconstructing a 3D voxel-based visual hull model using input images of an object captured by a multi view camera; converting the 3D voxel-based visual hull model into a mesh model; and generating a result of view-dependent rendering of a 3D model by performing the view-dependent texture mapping on the mesh model obtained through the conversion. Further, the reconstructing includes defining a 3D voxel space to be reconstructed; and excluding voxels not belonging to the object from the defined 3D voxel space.
Abstract:
A system and method for a mosaic rendering of a 3D model is provided. Textures are created using polygon information related to a vertex of each face of an inputted 3D model, a normal, and a face index, and the textures are one-to-one mapped on respective polygons of the 3D model, using a geometrical structure of the 3D mode, thereby rendering a mosaic image showing a volume and a crinkled effect of paper.
Abstract:
A system for compressing a picture includes: an information extraction unit for extracting information needed for encoding during a picture scene composition and animation process using a modeling object; and a rendering unit for generating an uncompressed picture sequence by rendering the object where the picture scene composition and animation process is performed. Further, the system for compressing a picture includes an encoding unit for generating a compressed bit stream by encoding the picture sequence from the rendering unit based on the information extracted by the information extraction unit.
Abstract:
A method for simulating digital watercolor image includes: receiving a background texture on a virtual canvas where a watercolor image will be painted; receiving parameters for fluid simulation; and creating brushstrokes by a mouse pointer's movement on the virtual canvas. Further, the method includes converting coordinates of the brushstrokes on the virtual canvas to fit into simulation grids; calculating movement of colors and water through the fluid simulation by using the parameters and the brushstrokes; and simulating the watercolor image based on the brushstrokes by using the calculated movement of the colors and water.
Abstract:
An apparatus for producing digital cartoons includes: an image collection unit for collecting photorealistic image data; and a cartooning processor for performing a rendering process including image abstraction and edge generation on the photorealistic image data collected by the image collection unit to generate cartooned images. The apparatus further includes a stylization unit for producing a cartoon page having various shapes of cartoon frames, resizing the cartooned images to place the resized images into the cartoon frames and adding cartoon elements to the images placed in the cartoon frames.
Abstract:
Provided is a silhouette rendering apparatus and method using temporal coherence in a 3D space. The silhouette rendering apparatus includes: an edge extracting module for extracting edges of a 3D object by using a smooth surface method generating edges on a surface among silhouette extracting algorithms among mesh information representing a mesh shape; a stroke generating module for generating a stroke by linking the acquired edges; and a parameter computing module for determining a related stroke based on camera and object animation information extracted from current and previous frames of the stroke, computing style-related parameters of the stroke, and setting them up. This makes artists freely express silhouette by applying parameters of silhouette edges to a silhouette style having temporal coherence between frames based on a concept that the silhouette edges move in a 3D space. Also, the present invention resolves a problem of temporal coherence of a silhouette rendering style which effectively reflects the shape of a 3D object.
Abstract:
In a method for controlling a posture of an articulated object, a user inputs an initial configuration of the object, a base point, an end point, a target point and a method for updating the posture. It is determined whether the number of joints positioned between the base and the end points is larger than or equal to three. If the number is smaller than or equal to two, it is determined whether the method for updating the posture is a two-segment or three-segment based method or another method for moving an intermediate end point. If the method is two-segment or three-segment based, the number is rechecked. If the number is smaller than or equal to two, the posture is modified according to the two-segment or three-segment based method. If the posture satisfies a predetermined condition, it is displayed on a screen.
Abstract:
The present invention is related to a system which is portable and attache the body of a trainee so that the trainee can practice navigating of a model airplane at an arbitrary location, contrary to the system of a large-sized airplane. According to an object of the present invention there is provided a trainee navigates a model airplane virtually by simulating a model airplane using a computer by combining the three-dimensional virtual image of a model airplane and the actual image of the training site by a computer. The simulation method of a radio-controlled model airplane of the present invention is comprising the steps of recording various airplane models into the computer system; simulating the airplane model by processing signals received from the controller; producing images by rendering the results of signal processing of the simulation step; showing images which are to appear in two eyes of the user at both indicators of HMD(head-mounted display) or STHMD(see-through head-mounted display) in order to convert produced images to be three-dimensional; and producing the unique sound of the corresponding airplane model in three dimensions and listening the sound to the headphone of HMD or STHMD.