Abstract:
A method for decoding bi-phase encoded data begins by interpreting a first bit boundary of a bit of the bi-phase encoded data to produce a first boundary value. The method continues by interpreting a second bit boundary of the bit of the bi-phase encoded data to produce a second boundary value. The method continues by comparing the first boundary value to the second boundary value to produce a decoded bit.
Abstract:
A communication system includes a reference station and a mobile station. The reference station is operable to: receive GPS signals; generate GPS assisting data from the received GPS signals; receive SBAS signals; obtain SBAS data from the received SBAS signals; combine the GPS assisting data and the SBAS data to produce combined GPS data; and transmit the combined GPS data via a terrestrial wireless communication. The mobile station is operable to: receive the GPS signals; receive the combined GPS data via the terrestrial wireless communication; and generate positioning data from the mobile received GPS signals and the combined GPS data.
Abstract:
An RFID system includes an RFID tag, an RFID reader, and a server. The RFID tag communicates to the server via encrypted information. The information may be encrypted with synchronized encryption keys. In this manner, the reader need not decrypt the information from the RFID tag. The effectiveness of malicious readers is thereby reduced, resulting in improved RFID tag security.
Abstract:
A radio frequency identification (RFID) decoding subsystem includes a pre-decode module and a decode module. The pre-decode module is coupled to process down-converted RFID signals into pre-decoded baseband data. The decode module is coupled to: enable a counting process based on the pre-decoded baseband data to produce a count resultant; and compare the count resultant with a threshold at a data bit interval to produce decoded RFID data.
Abstract:
A global navigation satellite system (GNSS) enabled mobile device may be operable to monitor and determine counts at which autoblank signals are asserted over time intervals corresponding to consecutive time windows during the RF interference mitigation process using autoblanking. The GNSS enabled mobile device may be operable to disable the generation of a blank signal when the count may be greater than a particular count threshold at the end of the time window. The GNSS enabled mobile device may be operable to enable the generation of a blank signal when the count may be less than or equal to a particular count threshold at the end of the time window. The blank signals may be used to blank the processing of the received GNSS signals.
Abstract:
A radio frequency identification (RFID) decoding subsystem includes a pre-decode module and a decode module. The pre-decode module is coupled to process down-converted RFID signals into at least one of pre-decoded baseband data and corresponding decoding information. The decode module is coupled to process the pre-decoded baseband data into decoded RFID data, where the processing of the pre-decoded baseband data is based on the corresponding decoding information when the corresponding decoding information is produced by the pre-decoder module.
Abstract:
A highly integrated and low-cost reader for a radio frequency identification (RFID) system is realized by providing a transmitter operable to generate an outbound radio frequency (RF) signal and a receiver operable to receive an inbound RF signal having a frequency similar to a frequency of the outbound RF signal on a single integrated circuit. Since the inbound RF signal may include not only a modulated RF signal produced by an RFID tag responsive to the outbound RF signal, but also a blocking signal corresponding to the outbound RF signal, the receiver additionally includes a block cancellation module operable to substantially cancel the blocking signal from the inbound RF signal using the outbound RF signal and to substantially pass the modulated RF signal before down-conversion of the modulated RF signal.
Abstract:
A method for decoding bi-phase encoded data begins by interpreting a first bit boundary of a bit of the bi-phase encoded data to produce a first boundary value. The method continues by interpreting a second bit boundary of the bit of the bi-phase encoded data to produce a second boundary value. The method continues by comparing the first boundary value to the second boundary value to produce a decoded bit.
Abstract:
A communication system includes a reference station and a mobile station. The reference station is operable to: receive GPS signals; generate GPS assisting data from the received GPS signals; receive SBAS signals; obtain SBAS data from the received SBAS signals; combine the GPS assisting data and the SBAS data to produce combined GPS data; and transmit the combined GPS data via a terrestrial wireless communication. The mobile station is operable to: receive the GPS signals; receive the combined GPS data via the terrestrial wireless communication; and generate positioning data from the mobile received GPS signals and the combined GPS data.
Abstract:
A radio device that is capable of positioning itself within a broadcast radio system includes a radio receiver operable to receive a plurality of broadcast radio signals, each broadcast from a respective one of a plurality of broadcast radio signal sources, and a GPS receiver coupled to receive a broadcast parameter determined using the broadcast radio signals and operable to calculate a GPS location of the radio device using the broadcast parameter.