Abstract:
Systems and methodologies are described that facilitate improved resource partitioning and interference management in a wireless communication system. Techniques are described herein for the transmission and use of various types of signaling, such as Access Request commands, Reverse Link Special Resource Utilization Message (R-SRUM) signaling, Forward Link Special Resource Utilization Message (F-SRUM) signaling, and the like, for managing interference associated with range extension, restricted association networks, and other jamming scenarios. As described herein, downlink resource coordination and interference management are accomplished through the use of Access Request or R-SRUM signaling conducted in a unicast or broadcast fashion, and uplink resource coordination and interference management are accomplished through the use of F-SRUM signaling. As further described herein, a clean communication channel such as a Low Reuse Preamble (LRP) channel can be utilized for interference management signaling and/or leveraged for determining timing of various signaling messages.
Abstract:
A method, a user equipment, an apparatus, and a computer program product for wireless communication are provided. The apparatus may receive a grant identifying an uplink resource allocation of less than one physical resource block (PRB), wherein the grant identifies a particular PRB in which the uplink resource allocation is included and at least a group of subcarriers allocated for the apparatus; and transmit uplink data using the uplink resource allocation. Numerous other aspects are described.
Abstract:
In a wireless communication system, from available data resource elements (REs) in a subframe, REs are assigned to transmissions of a reference signal, thereby resulting in a plurality of remaining data REs. Furthermore, REs from the plurality of remaining data REs are assigned for data transmission to a wireless device in groups of a predetermined number of REs such that all assigned data REs within a group are within a predetermined number of symbols of each other in time domain and within a second predetermined number of subcarriers of each other in frequency domain, thereby resulting in at least one ungrouped RE.
Abstract:
Aspects of the present disclosure relate to methods for allowing a relay base station to more efficiently decode relay control information transmitted from a donor base station. A relay base station may determine a configuration of resource elements used for transmission of reference signals and decode sets of resource elements based on the configuration of reference signals. According to aspects, a donor base station may transmit relay control information in a data portion of a subframe based on the configuration of reference signals transmitted by the donor base station.
Abstract:
Techniques for supporting operation of relay stations in wireless communication systems are described. In an aspect, a base station may transmit data to a relay station in a portion of a subframe instead of the entire subframe. The relay station may transmit control information during part of the subframe. The base station may transmit data to the relay station during the remaining part of the subframe. In another aspect, a target termination for a packet may be selected based on data and/or ACK transmission opportunities available for the packet. One or more transmissions of the packet may be sent with HARQ, and ACK information may be sent for the packet. The packet may be transmitted such that it can be terminated prior to the first subframe (i) not available for sending the packet or (ii) available for sending ACK information.
Abstract:
Techniques for supporting data transmission via a relay station are described. In an aspect, data transmission may be supported using ACK-and-suspend. A transmitter station sends a first transmission of a packet to a receiver station. The transmitter station receives no ACK information for the first transmission of the packet and suspends transmission of the packet. The transmitter station thereafter receives an indication to resume transmission of the packet and, in response, sends a second transmission of the packet. In another aspect, different ACK timeline may be used when applicable. The receiver station may send ACK information in a designated subframe if available for use or in a different subframe. In yet another aspect, ACK repetition may be used. The receiver may send ACK information in multiple subframes to facilitate reception of the ACK information when the transmitter station is unable to receive one or more of the multiple subframes.
Abstract:
Physical-Layer Cell Identifier (PCID) collisions may occur in a wireless network when two neighboring evolved Node Bs (eNBs) having different Global Cell Identifiers (GCID) select identical PCIDs. Evolved Node Bs may uniquely identify themselves by transmitting on a broadcast channel, such as a Physical Broadcast Channel (PBCH), a pattern of bits corresponding to the eNB's GCID. Individual User Equipments (UEs) may recognize the PCID collision by decoding the PBCH payload to identify different GCID-modulated payloads from two eNBs involved in the PCID collision. Alternatively, UEs may detect PCID collisions in the wireless network by monitoring Primary Synchronization Signals (PSS) and Secondary Synchronization Signals (SSS) on the PBCH for identical signals separated by a relatively large time offset. After detecting a PCID collision, the UEs may attempt by best effort to report the PCID collision, may report to a fallback eNB, or the UEs may use special resources on an uplink channel.
Abstract:
A precoding scheme to accommodate user equipment (UEs) having higher Doppler speeds. In such transmission schemes, a different precoding matrix is applied to each orthogonal frequency division multiplex (OFDM) symbol in the transmission stream. Additionally, a downlink control message format is defined to handle assignment of multiple different transmission schemes using the same message format. The downlink control message format includes a control element in one of the message fields along with a set of parameters specifically applicable to the assigned transmission scheme. Based on the value of this control element, the UE sets the specific transmission scheme and determines a set of interpretation rules uniquely associated with that transmission scheme. Using the interpretation rules, the UE is able to read the set of parameters as applied to the selected transmission scheme.
Abstract:
Certain aspects of the present disclosure propose methods and apparatuses for detecting whether a user device is scheduled for a single user (SU) multiple-input multiple-output (MIMO) communication mode or for a multi-user (MU) MIMO communication mode. In an aspect, a method for wireless communications is provided which includes measuring, at a first apparatus based on received pilot signals, a first receive power corresponding to a first channel associated with the first apparatus, measuring, based on the received pilot signals, a second receive power corresponding to a second channel associated with at least one potentially present second apparatus, measuring a residual interference based on the received pilot signals, and determining, based on at least one of the first receive power, the second receive power and the residual interference, whether to apply a MU detection or a SU detection for estimating data received at the first apparatus.
Abstract:
A method and apparatus of wireless communication are disclosed. The wireless communication performs pilot signal transmissions using a first precoding matrix for user equipment specific pilot signals, the pilot signal transmissions having a first transmission rank. The wireless communication also performs data transmissions using a second precoding matrix for data when the data transmissions have a second transmission rank less than the first transmission rank, in which the second precoding matrix includes a transformed version of the first precoding matrix. Alternatively, the wireless communication can perform data transmissions using at least two precoding matrices for data when the data transmissions have a second transmission rank less than or equal to the first transmission rank. Accordingly, the precoding matrix used for data is a transformed version of the precoding matrix used for user equipment specific pilot signals.