摘要:
The invention provides a method for separating halocarbons. In particular, a method for separating 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) from 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) based on differences in melting points of these compounds. More particularly the invention pertains to a method for separating HCFC-244bb from HCFO-1233xf which are useful as intermediates in the production of 2,3,3,3-tetrafluoropropene (HFO-1234yf).
摘要:
The present invention is directed to processes for the production of 1233zd from 240fa and HF, with or without a catalyst, at a commercial scale. The 240fa and HF are fed to a reactor operating at high pressure. The resulting product stream comprising 1233zd, HCl, HF, and other byproducts is treated to one or more purification techniques including phase separation and one or more distillations to provide purified 1233zd, which meets commercial product specifications, i.e., having a GC purity of 99.5% or greater.
摘要:
The present invention involves methods for isomerization of 1234zc. Also provided are methods for managing 1,1,3,3-tetrafluoropropene produced as a byproduct in a process for synthesizing trans-1,3,3,3-tetrafluoropropene from 245fa, wherein 1234zc is converted into trans/cis-1234ze with the help of a catalyst in the absence of HF and in an isomerization reactor, or is converted into 1234zc and/or 245fa with the help of a catalyst in the presence of HF in a separate reactor or preferably in the same reactor of 245fa dehydrofluorination.
摘要:
Provided is a process for purifying an organic feedstock comprising (a) distilling a raw organic feedstock comprising hydrogen fluoride, 2-chloro-1,1,1,2-tetrafluoropropane, and 2-chloro-3,3,3-trifluoropropene to produce a first distillate stream comprising an azeotrope-like composition of 2-chloro-1,1,1,2-tetrafluoropropane, 2-chloro-3,3,3-trifluoropropene, and hydrogen fluoride, and a first bottoms stream rich in hydrogen fluoride; (b) cooling said first distillate stream to produce an intermediate composition comprising an organic layer rich in 2-chloro-1,1,1,2-tetrafluoropropane and 2-chloro-3,3,3-trifluoropropene, and an acid layer rich in hydrogen fluoride; and, optionally but preferably, (c) distilling said organic layer to produce a second distillate stream comprising an azeotrope-like composition of 2-chloro-1,1,1,2-tetrafluoropropane, 2-chloro-3,3,3-trifluoropropene, and hydrogen fluoride, and a second bottoms stream comprising a purified organic feedstock substantially free of hydrogen fluoride.
摘要:
The present invention discloses high purity E-1-chloro-3,3,3-trifluoropropene (1233zd(E)) and methods to produce the same. More specifically, the present invention discloses the methods of making 1233zd(E) essentially free of toxic impurities (e.g. 2-chloro-3,3,3-trifluoropropene (1233xf), chlorotetrafluoro-propene (1224), and 3,3,3-trifluoropropyne). The present invention further provides methods for making high purity 1233zd(E) with concentration of 1233xf and 1224 at or below 200 parts per million (ppm) and 3,3,3-trifluoropropyne impurities at or below 20 ppm. Formation of 1233xf impurity can be avoided if pure 1,1,1,3,3-pentachloropropane is used as a starting material. It was also found that formation of 1233xf is avoided if a liquid phase manufacturing process is used.
摘要:
Disclosed is process for the production of (E) 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd(E)) by conducting a continuous reaction without the use of a catalyst. Also disclosed is an integrated system for producing hydrofluoro olefins, particularly 1233zd(E). The manufacturing process includes six major unit operations: (1) a fluorination reaction of HCC-240fa (in continuous or semi-batch mode) using HF with simultaneous removal of by-product HCl and the product 1233zd(E); (2) recycle of unreacted HCC-240fa and HF together with under-fluorinated by-products back to (1); (3) separation and purification of by-product HCl; (4) separation of excess HF back to (1); (5) purification of final product, 1233zd(E); and (6) isomerization of by-product 1233zd(Z) to 1233zd(E) to maximize the process yield.
摘要:
Provided are azeotropic and azeotrope-like compositions of 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) and hydrogen fluoride (HF). Such azeotropic and azeotrope-like compositions are useful as intermediates in the production of 2,3,3,3-tetrafluoropropene (HFO-1234yf).
摘要:
Provided are azeotropic and azeotrope-like compositions of 2,3-dichloro-3,3-difluoropropene (HCFO-1232xf) and hydrogen fluoride (HF). Such azeotropic and azeotrope-like compositions are useful as intermediates in the production of 2,3,3,3-tetrafluoropropene (HFO-1234yf).
摘要:
A method for preparing 2,3,3,3-tetrafluoroprop-1-ene comprising (a) providing a starting composition comprising at least one compound having a structure selected from Formulae I, II and III: CX2═CCl—CH2X (Formula I) CX3—CCl═CH2 (Formula II) CX3—CHCl—CH2X (Formula III) wherein X is independently selected from F, Cl, Br, and I, provided that at least one X is not fluorine; (b) contacting said starting composition with a first fluorinating agent to produce a first intermediate composition comprising 2-chloro-3,3,3-trifluoropropene and a first chlorine-containing byproduct; (c) contacting said first intermediate composition with a second fluorinating agent to produce a second intermediate composition comprising 2-chloro-1,1,1,2-tetrafluoropropane and a second chlorine-containing byproduct; and (d) catalytically dehydrochlorinating at least a portion of said 2-chloro-1,1,1,2-tetrafluoropropane to produce a reaction product comprising 2,3,3,3-tetrafluoroprop-1-ene.
摘要:
Processes and systems for the production of phosphorus pentafluoride (PF5) through continuous fluorination of phosphorus are provided herein. A phosphorus feed stream and a fluorine feed stream are provided to a reactor, wherein they are reacted in a gas-gas or liquid-gas reaction to produce phosphorus pentafluoride (PF5). The phosphorus feed can be derived from white phosphorus or yellow phosphorus, and can be provided to the reactor as a liquid or a vapor. The fluorine can be provided to the reactor as a vapor, and preferably comprises elemental fluorine gas.