Abstract:
System, method and computer program product for adjusting a representation of a merchandise hierarchy associated with an entity such as a retailer or wholesaler of products. Product correlation information discovered in that entity's customers' shopping records are obtained and incorporated into an existing merchandise hierarchy with a constraint on the consistency with the existing hierarchy.
Abstract:
A display system adaptable to changes in video signals and a method thereof display a video signal, which has a first display aspect ratio, in a display system, which has a second display aspect ratio. The display system includes a receiving unit for receiving the video signal, a detecting unit for detecting the first display aspect ratio of the video signal and a comparing unit for comparing the first display aspect ratio with the second display aspect ratio according to the first display aspect ratio detected by the detecting unit, and determining whether at least one covering structure is enabled in the display system so as to show the video signal corresponding to the display system.
Abstract:
An alarm filter (22) for use in a security system (14) to reduce the occurrence of nuisance alarms receives sensor signals (S1-Sn, Sv) from a plurality of sensors (18, 20) included in the security system (14). The alarm filter (22) produces an opinion output as a function of the sensor signals and selectively modifies the sensor signals as a function of the opinion output to produce verified sensor signals (S1′-Sn′).
Abstract:
In one embodiment, a driving circuit includes an AC/DC converter which converts an AC voltage to a DC voltage and a DC/DC linear regulator which regulates a current through, e.g., an LED light source, according to a first current reference if a monitoring signal indicating the DC voltage is within a predetermined range, and regulates the current according to a second current reference less than the first current reference if the monitoring signal is beyond the predetermined range. In another embodiment, a controller controlling power to an LED light source turns on a first plurality of LEDs and turns off a second plurality of LEDs if a monitoring signal indicative of a DC voltage received by the LED light source is within a predetermined range, and turns on both first and second plurality of LEDs if the monitoring signal is beyond the predetermined range.
Abstract:
An electrophoresis display pixel including an electrophoresis display film, a substrate, a first active device, a second active device, a first electrode, and a second electrode is provided. The substrate is disposed on the electrophoresis display film, and the substrate has a transparent region and a non-transparent region. The first active device and the second active device are disposed on the substrate and located in the non-transparent region. The first electrode is disposed on the substrate, located in the transparent region, and electrically connected to the first active device. The second electrode is disposed on the substrate, located in the non-transparent region, and electrically connected to the second active device. A light passes through the transparent region and enters the electrophoresis display film to be displayed. A display apparatus including the abovementioned electrophoresis display pixel is also provided.
Abstract:
A pixel structure is disclosed. The pixel structure includes a substrate, a first data line having at least one end formed on the substrate, a first insulation layer overlying the first data line and exposing a part of the end of the first data line, a shielding electrode disposed on the first insulation layer and overlapped with the first data line, a second data line formed on the first insulation layer and electrically connected to the exposed end of the first data line, a second insulation layer overlying the shielding electrode and the second data line, and a pixel electrode formed on the second insulation layer and overlapped with the shielding electrode. The invention also provides a method for fabricating the pixel structure.
Abstract:
A DC/AC cold cathode fluorescent lamp (CCFL) inverter circuit includes a transformer with a primary winding and a secondary winding for providing increased voltage to a CCFL, a first and second MOSFET switches for selectively allowing direct current of a first polarity and a second polarity to flow through the transformer respectively. The primary and secondary windings of the transformer are electrically coupled to ground. A capacitor divider is electrically coupled to the CCFL for providing a first voltage signal representing a voltage across the CCFL. A first feedback signal line receives the first voltage signal. A timer circuit is coupled to the first feedback signal line for providing a time-out sequence of a predetermined duration when the first voltage signal exceeds a predetermined threshold. A protection circuit shuts down the first switch and the second switch when the first voltage signal exceeds the predetermined threshold after the predetermined duration.
Abstract:
A method of manufacturing a pixel structure is provided. A first patterned conductive layer including a gate and a data line is formed on a substrate. A gate insulating layer is formed to cover the first patterned conductive layer and a semiconductor channel layer is formed on the gate insulating layer above the gate. A second patterned conductive layer including a scan line, a common line, a source and a drain is formed on the gate insulating layer and the semiconductor channel layer. The scan line is connected to the gate and the common line is located above the data line. The source and drain are located on the semiconductor channel layer, and the source is connected to the data line. A passivation layer is formed on the substrate to cover the second patterned conductive layer. A pixel electrode connected to the drain is formed on the passivation layer.
Abstract:
This invention in one aspect relates to a pixel structure. In one embodiment, the pixel structure includes a scan line formed on a substrate and a data line formed over the substrate defining a pixel area, a switch formed inside the pixel area on the substrate, a shielding electrode having a first portion and a second portion extending from the first portion, and formed over the scan line, the data line and the switch, where the first portion is overlapped with the switch and the second portion is overlapped with the data line, and a pixel electrode having a first portion and a second portion extending from the first portion, and formed over the shielding electrode in the pixel area, where the first portion is overlapped with the first portion of the shielding electrode so as to define a storage capacitor therebetween and the second portion has no overlapping with the second portion of the shielding electrode.
Abstract:
An array substrate and method for manufacturing the same is provided, wherein a data line is composed of first and second segments connected by a contact pad. First and second insulation layers are disposed between the first segment of the data line and a shielding electrode. In addition, the first insulation layer is disposed between the second segment of the data line and a gate line in their overlapping area. Accordingly, the coupling effect between the conductive layers can be reduced. For example, the RC delay problem due to parasitic capacitance between the shielding electrode and the data line is solved. As a result of the design of the two insulator layers between the first segment of the data line and the shielding electrode, the shorting between the conductive layers can also be simultaneously solved and the product yield can be increased.