Abstract:
An engine ECU executes a program including a step of calculating coefficient of correlation K that is a value related to a deviation between a vibration waveform and a knock waveform model by comparing the engine's vibration waveform with the knock waveform model stored in advance at a plurality of timings, a step of calculating a knock intensity N as based on a largest coefficient of correlation K among the calculated coefficient of correlation Ks, a step of determining that the engine knocks if knock intensity N is larger than a predetermined reference value (YES at S108), and a step of determining that the engine does not knock if knock intensity N is not larger than a predetermined reference value (NO at S108).
Abstract:
A waveform knock signal detected by a knock sensor is filtered through a band-pass filter. The detected wave form signal is compared with an ideal reference knock waveform to determine an engine knock. The ideal reference knock waveform is derived on the basis of a factor depending on a crank angle, a factor depending on a real time and a factor depending on an engine construction. The factor depending on the real time is calculated based on an energy loss in a combustion chamber and a time constant of the band-pass filter. The factor depending on the engine construction is calculated based on a knock vibration which is generated in a cylinder, transferred to a cylinder block and detected by the knock sensor.
Abstract:
An engine ECU executes a program including a step of calculating coefficient of correlation K that is a value related to a deviation between a vibration waveform and a knock waveform model by comparing the engine's vibration waveform with the knock waveform model stored in advance at a plurality of timings, a step of calculating a knock intensity N as based on a largest coefficient of correlation K among the calculated coefficient of correlation Ks, a step of determining that the engine knocks if knock intensity N is larger than a predetermined reference value (YES at S108), and a step of determining that the engine does not knock if knock intensity N is not larger than a predetermined reference value (NO at S108).
Abstract:
A heating roller (21) includes a heat generating layer (22) that generates heat by electromagnetic induction, a heat insulating layer (23), and a supporting layer (24), which are provided inwardly in this order. The heat generating layer (22) is composed of at least two layers that are a first heat generating layer of a magnetic material and a second heat generating layer of a non-magnetic material. The first heat generating layer has a specific resistance higher than a specific resistance of the second heat generating layer and a thickness larger than a thickness of the second heat generating layer. This allows the second heat generating layer to function effectively as a heat generating part that generates heat by electromagnetic induction. Thus, compared with the case where the heat generating layer (22) is formed only of a single layer of a magnetic material, heat generation efficiency is increased, thereby allowing warm-up time to be reduced. Further, the heat generating layer (22) is heated intensively, so that heat generation of the supporting layer (24) is reduced, thereby allowing the prevention of breakage of, for example, bearings supporting the heating roller (21).
Abstract:
A control unit employed in a variable valve timing apparatus vibrates a control signal for controlling an oil-pressure control valve. If the vibration center of the duty value of the control signal for driving the oil-pressure control valve lies in a dead band, the vibration takes the duty value to the outside of the dead center temporarily. Thus, even if the center value of the control signal lies in the dead band, the valve timing of the oil-pressure control valve changes with variations in control signal. As a result, the width of the dead band appears small or to have a value of zero. Accordingly, the response characteristic of variations in valve timing to the variations in control signal is improved. The vibration of the control signal is also effective for detection of a width of the dead band.
Abstract:
The signal levels of vibration waveform signals outputted by knock sensors are extracted at a filter processing section for each of a plurality of frequency bands. The mean value of the signal levels in the frequency bands at a point in time when variation of the signal levels in the frequency bands is minimum computed, and the mean value is detected as a background level. A knock characteristic parameter, which represents the characteristics of knock, is computed based on the extracted signal levels in the frequency bands. The knock characteristic parameter is compared with the background level to obtain a knock intensity. If the knock intensity is equal to or greater than a knock determination value, it is determined that knock that exceeds a permissible level is occurring. If the knock intensity is less than the knock determination value, it is determined that knock that exceeds the permissible level is not occurring. This configuration permits the background level of the output of the knock sensors to be accurately detected without being influenced by knock or noise.
Abstract:
In a valve timing adjusting apparatus, rotating response speed of a vane rotor and a moving speed of a lock piston are changed according to changes of oil temperature and pressure. It sometimes happens that the lock piston passes the fitting hole before the lock piston is fitted in the fitting hole. Timing of actuating a solenoid valve is retard by a given delay time from timing of actuating a spool valve. The given delay time is decided by a map based on sensor signals representing the oil temperature and pressure input to ECU. The given delay time is shorter as the oil temperature increases and longer as the oil pressure increases.
Abstract:
An optical disk device of the present invention includes an optical pickup which performs at least recording or reproduction of signals on or from an optical disk; a guiding section which supports and guides the optical pickup along the radial direction of the optical disk; an upper cover which protects the guiding section; a lower cover which protects the guiding section; and a base which supports the guiding sections therein. A height between the upper cover and the lower cover adjacent to an outer periphery of the optical disk is greater than a height between the upper cover and the lower cover adjacent to an inner periphery of the optical disk.