Abstract:
A protocol is provided that facilitates downlink concurrent peer-to-peer communications (within a time slot or traffic slot) between one device and many terminals as well as uplink concurrent peer-to-peer communications (within a time slot or traffic slot) between a plurality of terminals and one device. The concurrent peer-to-peer communications may take place within an ad hoc network of devices. To facilitate such operation, a time-frequency structure is provided within a control channel that allows the device and terminals to identify the peer-to-peer connections. This time-frequency structure also allows terminals to identify other sibling terminals that have a connection with the same device, thereby allowing to more efficiently performing interference mitigation. That is, sibling peer-to-peer connections with the same device may be treated different from other non-related peer-to-peer connects for purposes of interference mitigation in a wireless network.
Abstract:
A decentralized approach to peer discovery channel selection is used in some embodiments. In some such embodiments, a mobile wireless terminal supporting a peer to peer signaling protocol, independently determines what channels to use for peer discovery without a central controller indicating the channel or channels to be used. Assuming channels are of a suitable quality, the channels having the best quality need not be identified, with channel selection being made on a predetermined channel ordering basis from those with suitable quality. Different wireless communications devices in the system use the same peer discovery channel selection process making it likely that the same channel or channels will tend to be picked to be used for peer discovery. Other embodiments are directed to implementing a centralized approach to peer discovery channel selection in which a central controller or base station selects channels to be used for peer discovery signaling.
Abstract:
A method of wireless communication includes splitting data into n data sets, where n is greater than or equal to two. In addition, the method includes selecting n different resources associated with a resource identifier based on a hopping pattern for sending each of the data sets within a set of resources of one full set of transmissions. The selected n resources have a hopping pattern such that there is at least one resource of the n resources that is non-overlapping in time with resources associated with resource identifiers other than said resource identifier. Furthermore, the method includes sending m data sets on m selected resources in m transmissions within the one full set of transmissions, where m is less than or equal to n.
Abstract:
Methods and Apparatus for communicating information, e.g., control information, e.g., in the form of a control value, between communications devices, e.g., peer to peer communications devices, are described. Positional coding is used to encode a value to be communicated and the encoded value it then transmitted on a set of communications resources with the placement of signal energy on individual ones of the resources being used to create a pattern used to convey the value to be communicated. Resources, e.g., tone-symbols, which communicate unreliable signal portions due to interference are identified and not used in the positional decoding operation as either an energy carrying tone-symbol or a non-energy carrying tone-symbol.
Abstract:
Aspects relate to interference management in a multiple-input-multiple-output peer-to-peer network utilizing connection scheduling. When channel side information is available at both transmitter and receiver, both devices determine transmit/receiver beamforming vectors. Transmitter sends a first transmission request signal with first transmit beamforming vector and a second transmission request signal with second transmit beamforming vector in a transmission request block. Receiver estimates SINRs of the MIMO channels associated with the receive beamforming vectors and determines whether to return request response signals. Based on received request response signals, transmitter decides to transmit streams of data using the corresponding transmit beamforming vectors in the data burst. When channel side information is available only at receiver, transmitter sends one transmission request signal. Receiver estimates the SINRs of the MIMO channels associated with receive beamforming vectors using MMSE and/or successive interference cancellation (SIC), and returns request response signals in the request response block.
Abstract:
An improved mechanism is provided that facilitates transmission of small packets within an ad hoc peer-to-peer network. A small packet is identified to a receiver within a control channel so that its lower power can be considered in an interference management protocol implemented among local peer devices. In a traffic slot, a transmitter voluntarily backs down on the transmitter power as a smaller packet will require much lower signal-to-noise ratio. This will improve the signal energy per bit per noise power density for the transmission as well as minimize the interference caused to other wireless communications happening in the same spectrum.
Abstract:
Aspects describe different multiple antenna techniques that can be utilized in a peer-to-peer network based on a network congestion level. A MIMO scheme where a transmitter sends to a receiver multiple spatial streams at substantially the same time in the same traffic segment can be utilized when network congestion level is low. A receiver beam forming scheme where transmitter sends a single stream in a traffic segment and receiver uses multiple receive antennas to maximize signal to noise ratio can be utilized when network congestion level is high. The connection pair (transmitter and receiver) occupy more control resources in the MIMO scheme than the receiver beam forming scheme. The decision related to which technique to utilize can be made at about the same time as a communication is initiated. Further, if network conditions change during a communication, the antenna technique that is utilized can be switched to a different technique during the communication exchange.
Abstract:
Methods and apparatus well suited for supporting communications over different ranges in, for example, a peer to peer wireless communications system, are described. In the peer to peer network at least some of the types of signals, e.g., peer discovery signals and/or paging signals, are transmitted with no closed loop power control. An exemplary peer to peer timing structure includes air link resources allocated for a particular type of signaling in which the resources are segmented into multiple blocks which do not overlap in time, different ones of the multiple blocks being associated with different ranges. The characteristics of the basic transmission units of the multiple blocks based on range are different, e.g., tone size and symbol width are different. A wireless communications device implements the peer to peer timing structure and uses resources from different range based blocks at different times. Data traffic transmission units may be the same regardless of the range.
Abstract:
Methods and apparatus related to control channels in a wireless communications system are described. Different white space bands may be available at different locations. A wireless terminal monitors control information from multiple potentially available communications channels. Control time slots corresponding to some different channels are intentionally time offset from one another. Some embodiments implement predetermined control slot timing synchronized with respect to an external timing source. In other embodiments, a wireless terminal selects a control time slot on a new channel as a function of control slot timing on channels already in use. A wireless terminal selects one of a plurality of communications channels for use in communicating information and determines a position of a control time slot to be used on the selected communications channels. The wireless terminal uses the control time slot on the selected communications channel to transmit and receive control information.
Abstract:
Methods and apparatus implementing communications using different types of symbols, e.g. different characteristic OFDM symbols, at different times for different purposes are described. A first type of symbol is used for control signaling including conveying transmission request signals and/or transmission request response signals. A second type of symbol is used for conveying user data, e.g., traffic signals. The symbol period for a first type symbol is larger than the symbol period for a second type symbol. The tone spacing for a first type symbol is larger than the tone spacing for a second type symbol. The methods and apparatus are well suited for peer to peer communications systems in which a peer to peer communications device operates in a half-duplex mode of operation.