Abstract:
A backlight unit is provided. The backlight unit includes a point light source circuit board and a point light source group row comprised of a plurality of point light source groups arranged in the point light source circuit board in a line. In addition, at least a part of the point light source groups have a different rotating angle with respect to each other.
Abstract:
A backlight for a display device includes a board, a plurality of light emitting diodes (LEDs) mounted on the board, and a light guiding plate that is provided on the LEDs and has light reflecting grooves formed directly on respective LEDs. The light reflecting grooves are formed at an upper surface of the light guiding plate, having a shape of a reversed cone. In this backlight, the light traveling directly upward from the LED is efficiently reflected by total internal reflection and then recycled, resulting in a uniform light distribution of the backlight.
Abstract:
A device for controlling operation of lamps is provided. The device includes a power outputting part to provide a power voltage to a lamp array having at least one lamp; a temperature sensing part to detect a temperature of the lamp and to generate a temperature signal; and a controlling part to compare the temperature of the lamp with a threshold temperature to generate a first switching signal, in response to the temperature signal, and to output the first switching signal to the power outputting part to feedback control the temperature of the lamp.
Abstract:
According to an embodiment of the present invention, an LCD comprises a liquid crystal display panel, an LED circuit board disposed behind the liquid crystal display panel, wherein a plurality of LEDs are disposed on the LED circuit board, and a thermal conductive sheet for receiving heat generated from the plurality of LEDs, wherein a thermal conductivity of the thermal conductive sheet in a surface direction is higher than a thermal conductivity in a thickness direction.
Abstract:
A backlight unit having a structure which supports a diffusion sheet without a diffusion plate and a liquid crystal display device having the same include a backlight unit, which includes a receiving member having a receiving space and a coupling hole formed therein, a fastening member coupled to the coupling hole of the receiving member, and a sheet having a fastening hole formed therein, wherein the fastening member is coupled to the fastening hole to fix the sheet to the receiving member.
Abstract:
A backlight assembly and liquid crystal display (LCD) having the same each include a surface light source including a lower substrate, an upper substrate joined to an outer circumference of the lower substrate and forming a discharge space, and an electrode formed on the joined upper and lower substrates, and at least one light source holder including an upper support plate, a lower support plate, and a sidewall for connecting the upper support plate and the lower support plate, and covering the electrode formed on the joined upper and lower substrates from a side of the joined upper and lower substrates.
Abstract:
A prism member, a backlight assembly having the same, and a display device having the same, wherein the prism member includes a plate-type body portion having a thickness, and a plurality of unit light-concentrating portions formed on the body portion and arranged along a first direction and in a second direction crossing the first direction.
Abstract:
An LCD comprises an LCD panel on which an image is formed, a light guiding plate disposed behind the LCD panel, an LED unit disposed along at least one side of the light guiding plate and providing light to the LCD panel, a bottom chassis accommodating the light guiding plate and the LED unit, and a heat conduction member disposed across an external surface of the bottom chassis from an area facing the LED unit to an area apart from the LED unit and having a higher thermal conductivity than the bottom chassis.
Abstract:
According to an embodiment of the present invention, an LCD comprises a liquid crystal display panel, an LED circuit board disposed behind the liquid crystal display panel, wherein a plurality of LEDs are disposed on the LED circuit board, and a thermal conductive sheet for receiving heat generated from the plurality of LEDs, wherein a thermal conductivity of the thermal conductive sheet in a surface direction is higher than a thermal conductivity in a thickness direction.
Abstract:
A power supply includes a light source, a signal converting unit converting an externally supplied AC voltage into a DC voltage, a DC-DC converting unit converting a magnitude of the DC voltage, and a light source protecting unit. The light source protecting unit outputs the DC voltage of a predetermined range as a light source driving voltage to supply a stabilized source driving voltage to the light source and suspending an application of the light source driving voltage to the light source when a magnitude of the light source driving voltage is larger than a predetermined value, based on an externally supplied control signal.