Abstract:
A dielectric ceramic-forming composition capable of being sintered at a temperature lower than that in the known art and to be formed into a dielectric ceramic material having a high dielectric constant; and a dielectric ceramic material obtained from the dielectric ceramic-forming composition are provided.The dielectric ceramic-forming composition includes a perovskite (ABO3) ceramic material powder having an average particle size of 0.01 to 0.5 μm and a glass powder having an average particle size of 0.1 to 5 μm, wherein the content of the glass powder is 3 to 12 percent by weight. The perovskite (ABO3) ceramic material powder is preferably a perovskite (ABO3) ceramic material powder prepared by a wet reaction.
Abstract translation:一种电介质陶瓷形成组合物,其能够在比已知技术中低的温度下烧结并形成具有高介电常数的介电陶瓷材料; 并且提供由介电陶瓷形成组合物获得的介电陶瓷材料。 电介质陶瓷形成组合物包括平均粒径为0.01〜0.5μm的钙钛矿(ABO 3 N 3)陶瓷材料粉末和平均粒径为0.1〜5μm的玻璃粉末,其中, 玻璃粉末的含量为3〜12重量%。 钙钛矿(ABO 3)陶瓷材料粉末优选是通过湿反应制备的钙钛矿(ABO 3 N 3)陶瓷材料粉末。
Abstract:
It is an object of the present invention to provide an inorganic dielectric powder used for a composite dielectric material, the inorganic dielectric powder having high filling properties and expressing a high dielectric constant when used as a composite dielectric. It is another object of the present invention to provide a composite dielectric material having a high dielectric constant, the composite dielectric material being used for dielectric layers of electronic components, such as printed circuit boards, semiconductor packages, capacitors, antennae for radio frequencies, and inorganic electroluminescent devices. In an inorganic dielectric powder according to the present invention used for a composite dielectric material mainly containing a polymeric material and the inorganic dielectric powder, the inorganic dielectric powder includes perovskite compound oxide particles in which a subcomponent element is dissolved in barium titanate particles, wherein the perovskite compound oxide particles are prepared by wet-reaction of a titanium compound and a barium compound with a compound containing the subcomponent element and then calcining the resulting reaction product.
Abstract:
An analog semiconductor integrated circuit has an analog circuit, a PMOS and a bias adjustment circuit. The gate of the PMOS is the output section of an open drain system, and is connected to an internal node on the output side of the analog circuit. The bias adjustment circuit is connected to the internal node, and allows adjustment of the bias current in accordance with the fuse disconnection number. The relationship between the voltage when a fixed current flows to an input terminal and the fuse disconnection number that allows the optimum bias current to flow to the output section of the analog LSI is checked by using a plurality of sample analog LSIs having different threshold voltages. The voltage is measured by causing a fixed current to flow to the input terminal of a non-sample analog LSI, and the fuse disconnection number corresponding with this voltage is obtained. Thus, the fuses in the bias adjustment circuit are disconnected.
Abstract:
In a liquid crystal display device having a front window, light from a backlight is prevented from leaking through chamfered edges of the front window. An upper polarizing plate is formed on an opposing substrate and a light shielding material is formed abutting on an outer edge of the upper polarizing plate. Edges of the upper polarizing plate are located inward of edges of the front window. The upper polarizing plate and the front window are bonded with a boding material including an ultraviolet curable resin. The ultraviolet curable resin also lies over the light shielding material. Chamfers are formed in the front window and the ultraviolet curable resin does not adhere to the chamfers of the front window. By this structure, light from the backlight is prevented from entering the internal part of the front window through the chamfers of the front window and light leakage is prevented.
Abstract:
Provided is a liquid crystal display device, including: a liquid crystal display panel; a plate-shaped component having a light permeable region, the plate-shaped component being disposed so as to face a display surface of the liquid crystal display panel; a pressure sensitive adhesive layer having light permeability, which is adhered under pressure onto the display surface of the liquid crystal display panel; and an adhesive layer having light permeability, which is adhered onto a surface of the plate-shaped component facing the display surface, in which the plate-shaped component is mounted on the liquid crystal display panel through intermediation of the pressure sensitive adhesive layer and the adhesive layer.
Abstract:
Provided is a modified perovskite type composite oxide in which the dielectric characteristics are equal to or better than those prior to modification, there is no substantial elution of coating components from the modifying coating components, and change in the specific surface areas over time and elution of the A-site metals are suppressed effectively, while the cracking traits are good. A modified perovskite type composite oxide in which the particle surface of a perovskite type composite oxide is coated with a first component of at least one selected from TiO2 and SiO2 and a second component of at least one selected from a group consisting of Al, Zr, Nd, La, Ce, Pr, and Sm, wherein the coating is formed by hydrolyzing at least one selected from a hydrolyzable TiO2 precursor and a hydrolyzable SiO2 precursor as a source of the first component and a salt of at least one selected from a group consisting of Al, Zr, Nd, La, Ce, Pr, and Sm as a source of the second component, and then calcining them.
Abstract:
A dielectric ceramic-forming composition capable of being sintered at a temperature lower than that in the known art and to be formed into a dielectric ceramic material having a high dielectric constant; and a dielectric ceramic material obtained from the dielectric ceramic-forming composition are provided.The dielectric ceramic-forming composition includes a perovskite (ABO3) ceramic material powder having an average particle size of 0.01 to 0.5 μm and a glass powder having an average particle size of 0.1 to 5 μm, wherein the content of the glass powder is 3 to 12 percent by weight. The perovskite (ABO3) ceramic material powder is preferably a perovskite (ABO3) ceramic material powder prepared by a wet reaction.
Abstract:
When being blended particularly in a color toner, a barium titanate external additive for toner enhances the toner fluidity, electrical properties, and other relevant performance; concurrently achieves high image density and reduced background fog in a color printer using the toner; and further retains high image quality even under a high-temperature high-humidity environment and a low-temperature low-humidity environment. An industrially advantageous producing method of the barium titanate external additive for toner is also provided. The external additive for toner of the present invention includes spherical barium titanate having undergone coating treatment with a hydrophobicizing agent.
Abstract:
A sensor comprising a sensor element, a metallic housing holding therewithin the sensor element, an inner tubular member fixed to an axially rearward end of the metallic housing, and an outer tubular member radially surrounding the inner tubular member and having a radially inward crimping section for contact with an outer surface of the inner tubular member, wherein an axially forward end of the crimping section is disposed axially apart from an axially forward end of the outer tubular member by a distance of 1.5 mm or less.
Abstract:
Quantizers included in an analog-to-digital converter each compare an input analog voltage with a reference voltage to convert the analog voltage to digital data and output a voltage representative of a difference between the analog voltage and a voltage corresponding to the digital data. In each quantizer includes a comparator comparing the analog voltage with the reference voltage to output a result of comparison. An amplifier amplifies a voltage representative of a difference of the analog voltage from the reference voltage. Another amplifier inverts the voltage representative of the difference of the analog voltage from the reference voltage and amplifies the inverted voltage. A couple of switches are respectively connected to the one and the other amplifier for selecting either one of the output voltages of the amplifiers in accordance with the result of comparison. An exclusive-NOR gate develops the digital data in accordance with the result of comparison and digital data output from the preceding-stage quantizer.